Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains

dc.contributor.authorVan Rooyen, Ronel
dc.contributor.authorHahn-Hagerdal, Barbel
dc.contributor.authorLa Grange, Daniel C.
dc.contributor.authorVan Zyl, Willem H.
dc.date.accessioned2011-04-07T08:25:57Z
dc.date.available2011-04-07T08:25:57Z
dc.date.issued2004-12
dc.descriptionThe original publication is available at www.elsevier.com.
dc.descriptionIncludes bibliography.
dc.description.abstractβ-Glucosidase genes of fungal origins were isolated and heterologously expressed in Saccharomyces cerevisiae to enable growth on the disaccharide, cellobiose. To promote secretion of the β-glucosidases, the genes were fused to the secretion signal of the Trichoderma reesei xyn2 gene and constitutively expressed from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The two most promising enzymes, BGL1 from Saccharomycopsis fibuligera and BglA from Aspergillus kawachii, were anchored to the yeast cell surface by fusing the mature proteins to the α-agglutinin (AGα1) or cell wall protein 2 (Cwp2) peptides. The maximum specific growth rates (μmax) of the recombinant S. cerevisiae strains were determined in batch cultivation. S. cerevisiae secreting the recombinant S. fibuligera BGL1 enzyme sustained growth aerobically and anaerobically, in minimal medium containing 5 g L−1 cellobiose at 0.23 h−1 (compared to 0.29 h−1 on glucose) and 0.18 h−1 (compared to 0.25 h−1 on glucose), respectively. Substrate consumption and product formation were determined to evaluate product yields in glucose and cellobiose.en_ZA
dc.format.extentp. 284–295 : ill.
dc.identifier.citationVan Rooyen, Ronel, Hahn-Hagerdal, Barbel, La Grange, Daniel C., Van Zyl, Willem H. 2005. Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. Journal of Biotechnology, 120:284-295, doi:10.1016/j.jbiotec.2005.06.013, http://www.sciencedirect.com.ez.sun.ac.za/science?_ob=MImg&_imagekey=B6T3C-4GT7G4B-2-5&_cdi=4943&_user=613892&_pii=S0168165605003287&_origin=search&_coverDate=11%2F21%2F2005&_sk=998799996&view=c&wchp=dGLzVtb-zSkWA&md5=11828ed45ab4e0d3fd2466801b8359f6&ie=/sdarticle.pdfen_ZA
dc.identifier.issn0168-1656
dc.identifier.otherdoi:10.1016/j.jbiotec.2005.06.013
dc.identifier.urihttp://hdl.handle.net/10019.1/8486
dc.language.isoen_ZA
dc.publisherElsevieren_ZA
dc.rights.holderElsevieren_ZA
dc.subjectSaccharomyces cerevisiaeen_ZA
dc.subjectHeterologousen_ZA
dc.subjectProteinsen_ZA
dc.subjectProductionen_ZA
dc.subjectGlucosidaseen_ZA
dc.subjectCellobioseen_ZA
dc.subjectFermentationen_ZA
dc.subjectYeasten_ZA
dc.subjectSaccharomycopsisen_ZA
dc.subjectFibuligeraen_ZA
dc.titleConstruction of cellobiose-growing and fermenting Saccharomyces cerevisiae strainsen_ZA
dc.typeArticleen_ZA
Files