The effect of storage conditions on microbial communities in stool

dc.contributor.authorVan Zyl, Kristien Nelen_ZA
dc.contributor.authorWhitelaw, Andrew C.en_ZA
dc.contributor.authorNewton-Foot, Maeen_ZA
dc.date.accessioned2020-07-23T06:34:04Z
dc.date.available2020-07-23T06:34:04Z
dc.date.issued2020
dc.descriptionCITATION: Van Zyl, K. N., Whitelaw, A. C. & Newton-Foot, M. 2020. The effect of storage conditions on microbial communities in stool. PLoS ONE, 15(1):e0227486, doi:10.1371/journal.pone.0227486.
dc.descriptionThe original publication is available at https://journals.plos.org/plosone/
dc.descriptionPublication of this article was funded by the Stellenbosch University Open Access Fund
dc.description.abstractMicrobiome research has experienced a surge of interest in recent years due to the advances and reduced cost of next-generation sequencing technology. The production of high quality and comparable data is dependent on proper sample collection and storage and should be standardized as far as possible. However, this becomes challenging when samples are collected in the field, especially in resource-limited settings. We investigated the impact of different stool storage methods common to the TB-CHAMP clinical trial on the microbial communities in stool. Ten stool samples were subjected to DNA extraction after 48-hour storage at -80˚C, room temperature and in a cooler-box, as well as immediate DNA extraction. Three stool DNA extraction kits were evaluated based on DNA yield and quality. Quantitative PCR was performed to determine the relative abundance of the two major gut phyla Bacteroidetes and Firmicutes, and other representative microbial groups. The bacterial populations in the frozen group closely resembled the immediate extraction group, supporting previous findings that storage at -80˚C is equivalent to the gold standard of immediate DNA extraction. More variation was seen in the room temperature and coolerbox groups, which may be due to the growth temperature preferences of certain bacterial populations. However, for most bacterial populations, no significant differences were found between the storage groups. As seen in other microbiome studies, the variation between participant samples was greater than that related to differences in storage. We determined that the risk of introducing bias to microbial community profiling through differences in storage will likely be minimal in our setting.en_ZA
dc.description.urihttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227486
dc.description.versionPublisher's version
dc.format.extent11 pages
dc.identifier.citationVan Zyl, K. N., Whitelaw, A. C. & Newton-Foot, M. 2020. The effect of storage conditions on microbial communities in stool. PLoS ONE, 15(1):e0227486, doi:10.1371/journal.pone.0227486
dc.identifier.issn1932-6203 (online)
dc.identifier.otherdoi:10.1371/journal.pone.0227486
dc.identifier.urihttp://hdl.handle.net/10019.1/108718
dc.language.isoen_ZAen_ZA
dc.publisherPublic Library of Science
dc.rights.holderAuthors retain copyright
dc.subjectMicrobial communities -- Storageen_ZA
dc.subjectFeces -- Storage -- Testingen_ZA
dc.subjectMicroorganisms -- Storage -- Testingen_ZA
dc.subjectPolymerase chain reactionen_ZA
dc.titleThe effect of storage conditions on microbial communities in stoolen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vanzyl_effect_2020.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: