A one-class object-based system for sparse geographic feature identification

dc.contributor.advisorVan Niekerk, Adriaanen_ZA
dc.contributor.advisorMucina, L.en_ZA
dc.contributor.authorFourie, Christoffen_ZA
dc.contributor.otherUniversity of Stellenbosch. Faculty of Arts and Social Sciences. Dept. of Geography and Environmental Studies.en_ZA
dc.date.accessioned2011-02-03T12:02:49Zen_ZA
dc.date.accessioned2011-03-14T08:29:28Z
dc.date.available2011-02-03T12:02:49Zen_ZA
dc.date.available2011-03-14T08:29:28Z
dc.date.issued2011-03en_ZA
dc.descriptionThesis (MSc (Geography and Environmental Studies))--University of Stellenbosch, 2011.en_ZA
dc.description.abstractENGLISH ABSTRACT: The automation of information extraction from earth observation imagery has become a field of active research. This is mainly due to the high volumes of remotely sensed data that remain unused and the possible benefits that the extracted information can provide to a wide range of interest groups. In this work an earth observation image processing system is presented and profiled that attempts to streamline the information extraction process, without degradation of the quality of the extracted information, for geographic object anomaly detection. The proposed system, implemented as a software application, combines recent research in automating image segment generation and automatically finding statistical classifier parameters and attribute subsets using evolutionary inspired search algorithms. Exploratory research was conducted on the use of an edge metric as a fitness function to an evolutionary search heuristic to automate the generation of image segments for a region merging segmentation algorithm having six control parameters. The edge metric for such an application is compared with an area based metric. The use of attribute subset selection in conjunction with a free parameter tuner for a one class support vector machine (SVM) classifier, operating on high dimensional object based data, was also investigated. For common earth observation anomaly detection problems using typical segment attributes, such a combined free parameter tuning and attribute subset selection system provided superior statistically significant results compared to a free parameter tuning only process. In some extreme cases, due to the stochastic nature of the search algorithm employed, the free parameter only strategy provided slightly better results. The developed system was used in a case study to map a single class of interest on a 22.5 x 22.5km subset of a SPOT 5 image and is compared with a multiclass classification strategy. The developed system generated slightly better classification accuracies than the multiclass classifier and only required samples from the class of interest.en_ZA
dc.description.abstractAFIKAANSE OPSOMMING: Die outomatisering van die verkryging van inligting vanaf aardwaarnemingsbeelde het in sy eie reg 'n navorsingsveld geword as gevolg van die groot volumes data wat nie benut word nie, asook na aanleiding van die moontlike bydrae wat inligting wat verkry word van hierdie beelde aan verskeie belangegroepe kan bied. In hierdie tesis word 'n aardwaarneming beeldverwerkingsstelsel bekend gestel en geëvalueer. Hierdie stelsel beoog om die verkryging van inligting van aardwaarnemingsbeelde te vergemaklik deur verbruikersinteraksie te minimaliseer, sonder om die kwaliteit van die resultate te beïnvloed. Die stelsel is ontwerp vir geografiese voorwerp anomalie opsporing en is as 'n sagteware program geïmplementeer. Die program kombineer onlangse navorsing in die gebruik van evolusionêre soek-algoritmes om outomaties goeie beeldsegmente te verkry en parameters te vind, sowel as om kenmerke vir 'n statistiese klassifikasie van beeld segmente te selekteer. Verkennende navorsing is gedoen op die benutting van 'n rand metriek as 'n passings funksie in 'n evolusionêre soek heuristiek om outomaties goeie parameters te vind vir 'n streeks kombinering beeld segmentasie algoritme met ses beheer parameters. Hierdie rand metriek word vergelyk met 'n area metriek vir so 'n toepassing. Die nut van atribuut substel seleksie in samewerking met 'n vrye parameter steller vir 'n een klas steun vektor masjien (SVM) klassifiseerder is ondersoek op hoë dimensionele objek georiënteerde data. Vir algemene aardwaarneming anomalie opsporings probleme met 'n tipiese segment kenmerk versameling, het so 'n stelsel beduidend beter resultate as 'n eksklusiewe vrye parameter stel stelsel gelewer in sommige uiterste gevalle. As gevolg van die stogastiese aard van die soek algoritme het die eksklusiewe vrye parameter stel strategie effens beter resultate gelewer. Die stelsel is getoets in 'n gevallestudie waar 'n enkele klas op 'n 22.5 x 22.5km substel van 'n SPOT 5 beeld geïdentifiseer word. Die voorgestelde stelsel, wat slegs monsters van die gekose klas gebruik het, het beter klassifikasie akkuraathede genereer as die multi klas klassifiseerder.en_ZA
dc.format.extent192 p. : ill., maps
dc.identifier.urihttp://hdl.handle.net/10019.1/6666
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : University of Stellenboschen_ZA
dc.rights.holderUniversity of Stellenbosch
dc.subjectSegmentation evaluationen_ZA
dc.subjectImage classificationen_ZA
dc.subjectSupport vector machineen_ZA
dc.subjectEvolutionary search algorithmsen_ZA
dc.subjectDissertations -- Geography and environmental studiesen
dc.subjectTheses -- Geography and environmental studiesen
dc.titleA one-class object-based system for sparse geographic feature identificationen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fourie_oneclass_2011.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: