Thermodynamics analysis of variable viscosity hydromagnetic Couette flow in a rotating system with Hall effects

Date
2015-11-20
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Abstract
In this paper, we employed both first and second laws of thermodynamics to analyze the flow and thermal decomposition in a variable viscosity Couette flow of a conducting fluid in a rotating system under the combined influence of magnetic field and Hall current. The non-linear governing differential equations are obtained and solved numerically using shooting method coupled with fourth order Runge–Kutta–Fehlberg integration technique. Numerical results obtained for velocities and temperature profiles are utilized to determine the entropy generation rate, skin fictions, Nusselt number and the Bejan number. By plotting the graphs of various values of thermophysical parameters, the features of the flow characteristics are analyzed in detail. It is found that fluid rotation increases the dominant effect of heat transfer irreversibility at the upper moving plate region while the entropy production is more at the lower fixed plate region.
Description
CITATION: Makinde, O. D., Eegunjobi, A. S. & Tshehla, M. S. 2015. Thermodynamics analysis of variable viscosity hydromagnetic Couette flow in a rotating system with Hall effects. Entropy, 17(11):7811-7826, doi:10.3390/e17117811.
The original publication is available at http://www.mdpi.com/journal/entropy
Keywords
Hydromagnetic Couette flow, Rotating motion, Viscosity, Hall effects, Entropy analysis, Magnetohydrodynamic instabilities, Heat -- Transfer
Citation
Makinde, O. D., Eegunjobi, A. S. & Tshehla, M. S. 2015. Thermodynamics analysis of variable viscosity hydromagnetic Couette flow in a rotating system with Hall effects. Entropy, 17(11):7811-7826, doi:10.3390/e17117811.