An algebraic framework for reasoning about security

dc.contributor.advisorSanders, J. W.en_ZA
dc.contributor.authorRajaona, Solofomampionona Fortunaten_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Mathematical Sciences.en_ZA
dc.date.accessioned2013-02-21T13:17:25Zen_ZA
dc.date.accessioned2013-03-15T07:24:27Z
dc.date.available2013-02-21T13:17:25Zen_ZA
dc.date.available2013-03-15T07:24:27Z
dc.date.issued2013-03en_ZA
dc.descriptionThesis (MSc)--Stellenbosch University, 2013.en_ZA
dc.description.abstractENGLISH ABSTRACT: Stepwise development of a program using refinement ensures that the program correctly implements its requirements. The specification of a system is “refined” incrementally to derive an implementable program. The programming space includes both specifications and implementable code, and is ordered with the refinement relation which obeys some mathematical laws. Morgan proposed a modification of this “classical” refinement for systems where the confidentiality of some information is critical. Programs distinguish between “hidden” and “visible” variables and refinement has to bear some security requirement. First, we review refinement for classical programs and present Morgan’s approach for ignorance pre- serving refinement. We introduce the Shadow Semantics, a programming model that captures essential properties of classical refinement while preserving the ignorance of hidden variables. The model invalidates some classical laws which do not preserve security while it satisfies new laws. Our approach will be algebraic, we propose algebraic laws to describe the properties of ignorance preserving refinement. Thus completing the laws proposed in. Moreover, we show that the laws are sound in the Shadow Semantics. Finally, following the approach of Hoare and He for classical programs, we give a completeness result for the program algebra of ignorance preserving refinement.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Stapsgewyse ontwikkeling van ’n program met behulp van verfyning verseker dat die program voldoen aan die vereistes. Die spesifikasie van ’n stelsel word geleidelik ”verfyn” wat lei tot ’n implementeerbare kode, en word georden met ‘n verfyningsverhouding wat wiskundige wette gehoorsaam. Morgan stel ’n wysiging van hierdie klassieke verfyning voor vir stelsels waar die vertroulikheid van sekere inligting van kritieke belang is. Programme onderskei tussen ”verborgeën ”sigbare” veranderlikes en verfyning voldoen aan ’n paar sekuriteitsvereistes. Eers hersien ons verfyning vir klassieke programme en verduidelik Morgan se benadering tot onwetendheid behoud. Ons verduidelik die ”Shadow Semantics”, ’n programmeringsmodel wat die noodsaaklike eienskappe van klassieke verfyning omskryf terwyl dit die onwetendheid van verborge veranderlikes laat behoue bly. Die model voldoen nie aan n paar klassieke wette, wat nie sekuriteit laat behoue bly nie, en dit voldoen aan nuwe wette. Ons benadering sal algebraïese wees. Ons stel algebraïese wette voor om die eienskappe van onwetendheid behoudende verfyning te beskryf, wat dus die wette voorgestel in voltooi. Verder wys ons dat die wette konsekwent is in die ”Shadow Semantics”. Ten slotte, na aanleiding van die benadering in vir klassieke programme, gee ons ’n volledigheidsresultaat vir die program algebra van onwetendheid behoudende verfyning.af_ZA
dc.format.extent56 p.
dc.identifier.urihttp://hdl.handle.net/10019/9983en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/79869
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch University
dc.subjectShadow semanticsen_ZA
dc.subjectLawsen_ZA
dc.subjectSecurityen_ZA
dc.subjectCompletenessen_ZA
dc.subjectDissertations -- Mathematicsen_ZA
dc.subjectTheses -- Mathematicsen_ZA
dc.subjectComputer software -- Developmenten_ZA
dc.subjectComputer software -- Verificationen_ZA
dc.titleAn algebraic framework for reasoning about securityen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
rajaona_algebraic_2013.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: