Thermal management of moulds and dies : a contribution to improved design and manufacture of tooling for injection moulding

dc.contributor.advisorDimitrov, D. M.en_ZA
dc.contributor.advisorHarms, T. M.en_ZA
dc.contributor.advisorVan der Merwe, A. F.en_ZA
dc.contributor.authorMoammer, A. A.en_ZA
dc.contributor.otherUniversity of Stellenbosch. Faculty of Engineering. Dept. of Industrial Engineering.en_ZA
dc.date.accessioned2011-02-28T12:37:58Zen_ZA
dc.date.accessioned2011-03-14T08:28:04Z
dc.date.available2011-02-28T12:37:58Zen_ZA
dc.date.available2011-03-14T08:28:04Z
dc.date.issued2011-03en_ZA
dc.descriptionThesis (PhD (Industrial Engineering))--University of Stellenbosch, 2011.en_ZA
dc.description.abstractENGLISH ABSTRACT: Injection moulding of polymer components is subject to ever increasing demands for improved part quality and production rate. It is widely recognised that the mould cooling strategy employed is crucial to achieving these goals. A brief overview of injection moulding units and different types of injection moulds is given. The modern Additive Manufacturing (AM) technology for processing metal powders such as Direct Metal Laser Sintering (DMLS) and Selective Laser Melting (SLM) offers almost full freedom to the mould designer. Some of these modern manufacturing methods based on metal powders, which are able to produce complex cooling channels are analysed. A drastic change has entered the mould design domain - shifting the paradigm from design for manufacture to manufacture for design. In combination with suitable AM methods the concept of surface cooling moulds can now be efficiently implemented. This study presents a new approach of predicting the minimum cooling time required for the produced part. Different cooling layouts are analysed taking the heat transfer into consideration. The lumped heat capacity method is implemented in this research in order to determine the minimum cooling cycle time required. A new approach was developed to determine the most suitable cooling layout configuration, such as conventional cooling, conformal cooling or surface cooling, required for a moulded part based on its characteristics such as shape complexity, space available for the cooling layout, part quality requirements, production volume, and product life cycle. A mould cooling design process including simulation, reverse engineering and manufacturing of the mould insert was implemented in this study. In order to validate the generic model developed during the course of this research comparative experiments were carried out to determine the difference in performance of injection moulding using conventional or surface cooling methods. The experimental results showed a significant improvement in part quality produced with reduced cycle times using the surface cooling method.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: ‘Injection Moulding’ van polimeer komponente word al meer gedruk vir verbeterde kwaliteit en vinniger produksie tyd. Dit is orals bekend dat die gietvorm afkoeling strategie ‘n groot rol speel om hierdie twee doelwitte te bereik. Eers word ‘n kort oorslag gegee van ‘Injection Moulding’ eenhede en van verskillende ‘Injection Moulding’ vorms. Die moderne Aditatiewe Vervaardigingstegnologie vir die prosessering van metaal poeiers soos bv. Direkte Metaal Laser Sintering (DMLS) en Selektiewe Laser Smelting (SLM) bied basies volle vryheid ten opsigte van gietvorm ontwerp. Party van die moderne vervaadigings metodes, wat op metaal poeiers gebaseer is, wat komplekse koelings kanale kan produseer word geanaliseer. Die ontwerpers arena het ‘n groot verandering ondergaan deurdat die fokus van ontwerp vir vervaardiging verskuif het na vervaardiging vir ontwerp. In kombinasie met toepaslike aditatiewe vervaardigings metodes kan oppervlak verkoeling nou effektief geïmplementeer word. Hierdie studie bied a nuwe manier om die minimum verkoelings tyd benodig vir ‘n part te voorspel. Verskeie verkoelings uitlegte word geanaliseer waar hitte oordrag in ag geneem word. Die “lumped heat capacity” metode word gebruik om die minimum siklus tyd te bepaal. ‘n Nuwe benadering is ontwikkel om die mees geskikste verkoelings uitleg soos bv. konvensionele verkoeling, konvorme verkoeling of oppervlak verkoeling te bepaal vir ‘n spesifieke part gebaseer op die part se vorm kompleksiteit, spasie beskikbaar vir verkoelings kanale, kwaliteit vereistes en produk lewensiklus. Die volgende is in die studie geïmplementeer: ‘n vorm verkoelings ontwerp proses met simulasie, ‘reverse engineering’ en vervaardiging van die vorm insetsel. Om die generiese model te verifieer gedurende die studie is vergelykende eksperimente uitgevoer om die verskil in prestasie te bepaal tussen die gebruik van konvensionele en oppervlak verkoelings metodes. Die eksperimentele resultate het ‘n beduidende verbetering in part kwaliteit getoon met ‘n verkorte siklus tyd tydens die gebruik van die oppervlag verkoelings metode.af_ZA
dc.format.extent153 p. : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/6652
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : University of Stellenboschen_ZA
dc.rights.holderUniversity of Stellenbosch
dc.subjectConformal coolingen_ZA
dc.subjectAdditive manufacturingen_ZA
dc.subjectSelective laser meltingen_ZA
dc.subjectMould cooling configurationen_ZA
dc.subjectCooling cycle timeen_ZA
dc.subjectDissertations -- Industrial engineeringen_ZA
dc.subjectTheses -- Industrial engineeringen_ZA
dc.subjectInjection molding of plasticsen_ZA
dc.titleThermal management of moulds and dies : a contribution to improved design and manufacture of tooling for injection mouldingen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
moammer_thermal_2011.pdf
Size:
12.27 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: