Exploring the antimicrobial and antifouling properties of secondary metabolites produced by serratia marcescens
Date
2021-04
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: The emergence of multi- (MDR) and extensive drug-resistant (XDR) bacterial and fungal pathogens
constitutes a major public health concern and has led to the prioritisation of research into the
discovery of novel bioactive compounds. Microbial secondary metabolites serve as promising
alternative antimicrobial and antifouling agents, with Serratia species representing a potential
untapped source of novel and structurally diverse bioactive compounds. Chapter one (abbreviated
version published in Applied Microbiology and Biotechnology) focused on the classification,
biosynthesis, production and application of secondary metabolites produced by Serratia species. The
primary focus of this dissertation was subsequently to identify secondary metabolites produced by
environmental Serratia species that display antimicrobial and antifouling activity, and elucidate
the secondary metabolic profiles and chemical structures of these compounds.
In Chapter two (published in Microbiological Research), various environmental sources were screened
for Serratia isolates capable of biosurfactant production during secondary metabolism. A total of
569 presumptive Serratia strains were subsequently isolated from wastewater treatment plants, an
oil refinery, winery and olive oil estates, river water and rainwater samples. Preliminary
screening methods (i.e. oil spreading method, emulsification assay and surface tension
measurements) and molecular typing identified twenty-two pigmented (n = 11; P1 to P11) and non-
pigmented (n = 11; NP1 to NP11) Serratia marcescens (S. marcescens) presumptive biosurfactant
producers. Based on the physico-chemical analysis, molecular analysis and preliminary
antimicrobial testing, ultra-performance liquid chromatography (UPLC) linked to electrospray
ionisation mass spectrometry (ESI-MS) was used to identify the secondary metabolites produced by
S. marcescens strains P1, NP1 and NP2. Strains P1 and NP1 produced serrawettin W1 homologues (also
known as serratamolides) as well as prodigiosin (P1) and glucosamine derivative A (NP1). In
contrast, serrawettin W2 analogues were predominantly identified in the NP2 extract. Antimicrobial
analysis then indicated that the P1 and NP1 crude extracts exhibited broad-spectrum antimicrobial
activity against opportunistic pathogens, such as MDR Pseudomonas aeruginosa (P. aeruginosa),
methicillin-resistant Staphylococcus aureus and a clinical Cryptococcus neoformans strain.
While an XDR Acinetobacter baumannii strain was susceptible to the NP2 extract, a narrower spectrum
of antimicrobial activity was observed in comparison to the other two strains. The compounds
produced by the P1 (pigmented) and NP1 (non-pigmented) S. marcescens strains could thus serve as a
promising source of antimicrobial agents for therapeutic application.
An integrated approach involving the use of reverse-phase high-performance liquid chromatography
(RP-HPLC), ESI-MS, UPLC linked to tandem mass spectrometry (UPLC-MSᵉ) and molecular networking
(using the Global Natural Products Social molecular network platform), was applied in Chapter three
to unravel the secondary metabolic profiles and structures of the bioactive compounds produced by
S. marcescens P1 and NP1. The mass spectrometry-based molecular
networking guided the structural elucidation of 18 compounds for the P1 strain (including 6
serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for
the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using
the UPLC-MSᵉ fragmentation profiles. It was proposed that the serratamolide homologues consisted of
two L-serine residues (cyclic or open-ring) linked to two fatty acyl chains (lengths of C₁₀, C₁₂ or
C₁₂:₁). The glucosamine derivative homologues consisted of four residues, including glucose /
hexose, valine, butyric acid (or oxo-hexanoic acid for derivative at m/z 627.4192) and a saturated
or unsaturated fatty acyl chain (lengths of C₁₃ to C₁₇). The putative structures of a novel
open-ring serratamolide homologue and eight novel glucosamine derivative congeners were described.
The minimum inhibitory and bactericidal concentrations revealed that prodigiosin exhibited potent
activity against Enterococcus faecalis (E. faecalis), followed by glucosamine derivative A
and serratamolides A, B and C. The integrated approach thus provided insight into the secondary
metabolic profile and structures of novel congeners produced by the S. marcescens strains.
In Chapter four, the biofilm disruption and antiadhesive potential of the P1 and NP1 crude extracts
was evaluated using the Minimum Biofilm Eradication Concentration (MBEC) Assay® against single- and
dual-species biofilms. Plate count and viability-quantitative polymerase chain reaction indicated
that the P1 and NP1 extracts significantly reduced (≥ 2 logs) biofilms formed by
E. faecalis, while the single-species P. aeruginosa biofilm was more susceptible (≥ 2 logs) to the
P1 extract. The P1 and NP1 extracts significantly reduced the dual-species P. aeruginosa and
E. faecalis biofilm; however, in comparison to the single-species E. faecalis biofilm, increased
concentrations of both extracts were required to reduce E. faecalis by ≥ 2 logs. Moreover, pre-
absorption of the P1 and NP1 extracts (at 50 mg/mL) onto the pegs of the MBEC Assay® reduced the
adhesion of mono-culture P. aeruginosa and E. faecalis cells by ≥ 80% based on cell counts and gene
copies. In contrast, for the co-culture experiments, significant reductions (≥ 90% based on cell
counts and gene copies) in the adhesion of only E. faecalis to the P1 and NP1 coated pegs were
observed. Serratamolides and glucosamine derivatives present in the P1 and NP1 extracts were
subsequently covalently immobilised onto high-density polyethylene (HDPE) and polyvinyl chloride
(PVC) discs. The P1 and NP1 coated HDPE reduced the adhesion of P. aeruginosa cells by ≥ 87% based
on plate counts and ≥ 64% based on gene copies, while the E. faecalis cells were reduced by
≥ 96% based on plate counts and ≥ 87% based on gene copies. The P1 and NP1 coated PVC also
effectively reduced the adhesion of P. aeruginosa cells by ≥ 81% based on plate counts and ≥ 99%
based on gene copies however, minor reductions in E. faecalis adhesion were observed. While it is
recommended that the antifouling potential of the biomaterials be tested against mixed microbial
communities and that the serratamolides and glucosamine derivatives be immobilised onto various
other piping materials frequently used in the water, food and medical industries; this preliminary
analysis indicates that the P1 and NP1 extracts could potentially be applied as a preventative
strategy to delay the onset of biofilm formation on polymeric materials.
AFRIKAANS OPSOMMING: Die ontstaan van multi- (MDR) en ekstensiewe (XDR) antibiotika weerstandige bakterieë en swamme is ‘n groot bekommernis vir gemeenskapsgesondheid. Dit het dus gelei tot die prioritisering van navorsing wat fokus op die ontdekking van nuwe bio-aktiewe verbindings. Sekondêre metaboliete van mikrobiese oorsprong is belowende alternatiewe antimikrobiese en antibesoedelings verbindings en Serratia spesies dien as ʼn ongetapte bron van nuwe en struktureel diverse bio-aktiewe verbindings. Hoofstuk een (verkorte weergawe gepubliseer in “Applied Microbiology and Biotechnology”) het dus op die klassifikasie, biosintese, produksie en toepassing van sekondêre metaboliete wat deur Serratia spesies geproduseer word, gefokus. Daaropvolgend was die primêre doel van hierdie dissertasie om die sekondêre metaboliete wat deur omgewingstamme van Serratia spesies geproduseer word, en antimikrobiese en antibesoedeling aktiwiteit toon, te identifiseer, om die stamme se sekondêre metaboliet profiele te bepaal en die chemiese samestelling van die metaboliete te ontleed. In Hoofstuk twee (gepubliseer in “Microbiological Research”), is verskeie bronne in die omgewing ondersoek vir Serratia isolate wat biosurfaktante tydens sekondêre metabolisme kan produseer. In totaal is 569 voornemende Serratia stamme uit water van riool aanlegte, ʼn olieraffinadery, wyn- en olyf-plase, asook rivier- en reënwater, geïsoleer. Voorlopige toetse (soos die olieverspreidingstoets, emulsifikasie toets en oppervlak spanning metings) en molekulêre tipering het twee-en-twintig gepigmenteerde (n = 11; P1 tot P11) en ongepigmenteerde (n = 11; NP1 tot NP11) Serratia marcescens (S. marcescens) stamme, wat moontlike biosurfaktant produseerders is, geïdentifiseer. Na aanleiding van die fisiese en chemiese analises, die molekulêre analises en voorlopige antimikrobiese toetse, is ultraprestasie vloeistofchromatografie (UPVC) wat aan elektronsproei ionisasie massaspektrometrie (ESI-MS) gekoppel is, gebruik om die voornemende sekondêre metaboliete wat deur S. marcescens P1, NP1 en NP2 geproduseer word, te identifiseer. Die P1 stam het serrawettin W1 homoloë (wat ook bekend staan as serratamoliedes) en prodigiosien geproduseer, terwyl NP1 serrawettin W1 homoloë en glukosamien afstammelinge geproduseer het. In teenstelling hiermee, is serrawettin W2 analoë hoofsaaklik in die NP2 ekstrakte geïdentifiseer. Die antimikrobiese analises het aangedui dat die P1 en NP1 kru-ekstrakte breë spektrum antimikrobiese aktiwiteit teen opportunistiese patogene soos Pseudomonas aeruginosa (P. aeruginosa), metisillien weerstandige Staphylococcus aureus en ‘n kliniese Cryptococcus neoformans stam gehad het. Daarteenoor was ʼn XDR Acinetobacter baumannii stam sensitief vir die NP2 ekstrak, waarvoor ‘n nouer spektrum van antimikrobiese aktiwiteit opgemerk is. Die verbindings wat deur die P1 (gepigmenteerd) en NP1 (ongepigmenteerd) S. marcescens stamme geproduseer word, kan dus as belowende bron van antimikrobiese middels vir terapeutiese verbruik dien. ʼn Geïntegreerde benadering wat omgekeerde fase hoëprestasie vloeistofchromatografie (OF- HPVC), ESI-MS, UPVC gekoppel aan tandem massaspektrometrie (UPVC-MSᵉ) en molekulêre netwerking (deur gebruik van die “Global Natural Products Social” molekulêre netwerk) insluit, is toegepas in Hoofstuk drie om die sekondêre metaboliese profiel en die strukture van die bio- aktiewe verbindings wat deur S. marcescens P1 en NP1 geproduseer word, te ontrafel. Die massaspektrometrie gebaseerde molekulêre netwerking het die ontleding van 18 verbindings wat deur P1 geproduseer word (insluitend 6 serratamoliedes, 10 glukosamien verwantes, prodigiosien en serratiochelin) en 15 verbindings wat deur NP1 geproduseer word (insluitend 8 serratamoliedes, 6 glukosamien verwantes, prodigiosien en serratiochelin) begelei met die gebruik van die UPVC- MSᵉ fragmentasie profiele. Dit is voorgestel dat die serratamoliede homoloë uit twee L-serienreste (siklies of oop-ring) wat aan twee vet asielkettings (met lengtes van C₁₀, C₁₂ en C₁₂:₁) gekoppel is, bestaan. Dit is ook voorgestel dat die glukosamien verwante homoloë uit vier reste wat glukose/heksose, valien, bottersuur (of okso-heksanoësuur vir die verwante verbinding by m/z 627.4192) en ʼn versadigde of onversadigde vet asielketting (met lengtes van C₁₃ tot C₁₇), bestaan. Die voorlopige struktuur van ‘n nuwe oop-ring serratamolied homoloog en agt nuwe glukosamine verwante kongenere is ook beskryf. Die minimum inhibitoriese en bakterisidiese konsentrasie is bepaal en het aangedui dat prodigiosien kragtige aktiwiteit teen Enterococcus faecalis (E. faecalis) toon, gevolg deur glukosamien verwante verbinding A en die serratamolieded (A, B en C). Die geïntegreerde benadering het dus insig gelewer aangaande die sekondêre metaboliese profiel en die strukture van die nuwe kongenere wat deur S. marcescens stamme geproduseer word. In Hoofstuk vier is die vermoë van P1 en NP1 om biofilms af te breek en die anti-aanhegtings potensiaal van hierdie kru-ekstrakte geëvalueer deur gebruik te maak van die “Minimum Biofilm Eradication Concentration (MBEC) Assay®” op enkel spesie en tweeledige biofilms. Plaattellings en lewensvatbaarheid-kwantitatiewe polimerase kettingreaksie analises het aangedui dat die P1 en NP1 ekstrakte biofilms wat deur E. faecalis gevorm is, beduidend afgebreek het (≥ 2 log vermindering), terwyl die enkel spesie biofilm wat deur P. aeruginosa gevorm is, meer sensitief (≥ 2 log vermindering) was vir die P1 ekstrak. Die P1 en NP1 ekstrakte het die tweeledige biofilm wat uit P. aeruginosa en E. faecalis bestaan beduidend verminder, maar vir die biofilm wat slegs uit E. faecalis bestaan, moes hoër konsentrasies van beide ekstrakte gebruik word om E. faecalis met ≥ 2 logs te verminder. Verder het die absorpsie van die P1 en NP1 ekstrakte (teen 50 mg/mL) aan die penne van die “MBEC Assay®”, die aanhegting van die monokultuur P. aeruginosa en E. faecalis selle met 80% verminder na aanleiding van die seltellings en geen kopieë wat verkry is. In teenstelling hiermee, vir die tweeledige kultuur eksperimente, is daar ‘n beduidende vermindering (≥ 90% gebaseer op seltellings en geen kopieë) in die aanhegting van die E. faecalis selle aan die penne wat met die P1 en NP1 ekstrakte bedek is, opgemerk. Serratamoliede en glukosamien verwante verbindings wat in die P1 en NP1 ekstrakte voorgekom het, is kovalent geïmmobiliseer op hoë digtheid poli-etileen (HDPE) en poliviniel chloried (PVC) skyfies. Die P1 en NP1 ekstrakte wat op die HDPE skyfies aangebring is, het die aanhegting van die P. aeruginosa selle met ≥ 87% (plaattellings) en ≥ 64% (geen kopieë) verminder, terwyl die aanhegting van die E. faecalis selle met ≥ 96% (plaattellings) en ≥ 87% (geen kopieë) verminder is. Die P1 en NP1 ekstrakte wat op die PVC skyfies aangebring is, het die aanhegting van die P. aeruginosa selle met ≥ 81% (plaattellings) en ≥ 99% (geen kopieë) verminder, maar vir E. faecalis is daar slegs ‘n minimale vermindering van die selle opgemerk. Terwyl dit aanbeveel word dat biomateriale getoets moet word vir antibesoedeling potensiaal teen gemengde mikrobiese gemeenskappe en dat serratamoliede en glukosamien verwante verbindings geïmmobiliseer moet word op materiaal wat gebruik word in die water, kos en mediese industrie, wys hierdie voorlopige resultate ook dat die P1 en NP1 ekstrakte aangewend kan word as ʼn voorkomings maatreël wat moontlik die vorming van biofilms op polimeriese materiaal kan vertraag.
AFRIKAANS OPSOMMING: Die ontstaan van multi- (MDR) en ekstensiewe (XDR) antibiotika weerstandige bakterieë en swamme is ‘n groot bekommernis vir gemeenskapsgesondheid. Dit het dus gelei tot die prioritisering van navorsing wat fokus op die ontdekking van nuwe bio-aktiewe verbindings. Sekondêre metaboliete van mikrobiese oorsprong is belowende alternatiewe antimikrobiese en antibesoedelings verbindings en Serratia spesies dien as ʼn ongetapte bron van nuwe en struktureel diverse bio-aktiewe verbindings. Hoofstuk een (verkorte weergawe gepubliseer in “Applied Microbiology and Biotechnology”) het dus op die klassifikasie, biosintese, produksie en toepassing van sekondêre metaboliete wat deur Serratia spesies geproduseer word, gefokus. Daaropvolgend was die primêre doel van hierdie dissertasie om die sekondêre metaboliete wat deur omgewingstamme van Serratia spesies geproduseer word, en antimikrobiese en antibesoedeling aktiwiteit toon, te identifiseer, om die stamme se sekondêre metaboliet profiele te bepaal en die chemiese samestelling van die metaboliete te ontleed. In Hoofstuk twee (gepubliseer in “Microbiological Research”), is verskeie bronne in die omgewing ondersoek vir Serratia isolate wat biosurfaktante tydens sekondêre metabolisme kan produseer. In totaal is 569 voornemende Serratia stamme uit water van riool aanlegte, ʼn olieraffinadery, wyn- en olyf-plase, asook rivier- en reënwater, geïsoleer. Voorlopige toetse (soos die olieverspreidingstoets, emulsifikasie toets en oppervlak spanning metings) en molekulêre tipering het twee-en-twintig gepigmenteerde (n = 11; P1 tot P11) en ongepigmenteerde (n = 11; NP1 tot NP11) Serratia marcescens (S. marcescens) stamme, wat moontlike biosurfaktant produseerders is, geïdentifiseer. Na aanleiding van die fisiese en chemiese analises, die molekulêre analises en voorlopige antimikrobiese toetse, is ultraprestasie vloeistofchromatografie (UPVC) wat aan elektronsproei ionisasie massaspektrometrie (ESI-MS) gekoppel is, gebruik om die voornemende sekondêre metaboliete wat deur S. marcescens P1, NP1 en NP2 geproduseer word, te identifiseer. Die P1 stam het serrawettin W1 homoloë (wat ook bekend staan as serratamoliedes) en prodigiosien geproduseer, terwyl NP1 serrawettin W1 homoloë en glukosamien afstammelinge geproduseer het. In teenstelling hiermee, is serrawettin W2 analoë hoofsaaklik in die NP2 ekstrakte geïdentifiseer. Die antimikrobiese analises het aangedui dat die P1 en NP1 kru-ekstrakte breë spektrum antimikrobiese aktiwiteit teen opportunistiese patogene soos Pseudomonas aeruginosa (P. aeruginosa), metisillien weerstandige Staphylococcus aureus en ‘n kliniese Cryptococcus neoformans stam gehad het. Daarteenoor was ʼn XDR Acinetobacter baumannii stam sensitief vir die NP2 ekstrak, waarvoor ‘n nouer spektrum van antimikrobiese aktiwiteit opgemerk is. Die verbindings wat deur die P1 (gepigmenteerd) en NP1 (ongepigmenteerd) S. marcescens stamme geproduseer word, kan dus as belowende bron van antimikrobiese middels vir terapeutiese verbruik dien. ʼn Geïntegreerde benadering wat omgekeerde fase hoëprestasie vloeistofchromatografie (OF- HPVC), ESI-MS, UPVC gekoppel aan tandem massaspektrometrie (UPVC-MSᵉ) en molekulêre netwerking (deur gebruik van die “Global Natural Products Social” molekulêre netwerk) insluit, is toegepas in Hoofstuk drie om die sekondêre metaboliese profiel en die strukture van die bio- aktiewe verbindings wat deur S. marcescens P1 en NP1 geproduseer word, te ontrafel. Die massaspektrometrie gebaseerde molekulêre netwerking het die ontleding van 18 verbindings wat deur P1 geproduseer word (insluitend 6 serratamoliedes, 10 glukosamien verwantes, prodigiosien en serratiochelin) en 15 verbindings wat deur NP1 geproduseer word (insluitend 8 serratamoliedes, 6 glukosamien verwantes, prodigiosien en serratiochelin) begelei met die gebruik van die UPVC- MSᵉ fragmentasie profiele. Dit is voorgestel dat die serratamoliede homoloë uit twee L-serienreste (siklies of oop-ring) wat aan twee vet asielkettings (met lengtes van C₁₀, C₁₂ en C₁₂:₁) gekoppel is, bestaan. Dit is ook voorgestel dat die glukosamien verwante homoloë uit vier reste wat glukose/heksose, valien, bottersuur (of okso-heksanoësuur vir die verwante verbinding by m/z 627.4192) en ʼn versadigde of onversadigde vet asielketting (met lengtes van C₁₃ tot C₁₇), bestaan. Die voorlopige struktuur van ‘n nuwe oop-ring serratamolied homoloog en agt nuwe glukosamine verwante kongenere is ook beskryf. Die minimum inhibitoriese en bakterisidiese konsentrasie is bepaal en het aangedui dat prodigiosien kragtige aktiwiteit teen Enterococcus faecalis (E. faecalis) toon, gevolg deur glukosamien verwante verbinding A en die serratamolieded (A, B en C). Die geïntegreerde benadering het dus insig gelewer aangaande die sekondêre metaboliese profiel en die strukture van die nuwe kongenere wat deur S. marcescens stamme geproduseer word. In Hoofstuk vier is die vermoë van P1 en NP1 om biofilms af te breek en die anti-aanhegtings potensiaal van hierdie kru-ekstrakte geëvalueer deur gebruik te maak van die “Minimum Biofilm Eradication Concentration (MBEC) Assay®” op enkel spesie en tweeledige biofilms. Plaattellings en lewensvatbaarheid-kwantitatiewe polimerase kettingreaksie analises het aangedui dat die P1 en NP1 ekstrakte biofilms wat deur E. faecalis gevorm is, beduidend afgebreek het (≥ 2 log vermindering), terwyl die enkel spesie biofilm wat deur P. aeruginosa gevorm is, meer sensitief (≥ 2 log vermindering) was vir die P1 ekstrak. Die P1 en NP1 ekstrakte het die tweeledige biofilm wat uit P. aeruginosa en E. faecalis bestaan beduidend verminder, maar vir die biofilm wat slegs uit E. faecalis bestaan, moes hoër konsentrasies van beide ekstrakte gebruik word om E. faecalis met ≥ 2 logs te verminder. Verder het die absorpsie van die P1 en NP1 ekstrakte (teen 50 mg/mL) aan die penne van die “MBEC Assay®”, die aanhegting van die monokultuur P. aeruginosa en E. faecalis selle met 80% verminder na aanleiding van die seltellings en geen kopieë wat verkry is. In teenstelling hiermee, vir die tweeledige kultuur eksperimente, is daar ‘n beduidende vermindering (≥ 90% gebaseer op seltellings en geen kopieë) in die aanhegting van die E. faecalis selle aan die penne wat met die P1 en NP1 ekstrakte bedek is, opgemerk. Serratamoliede en glukosamien verwante verbindings wat in die P1 en NP1 ekstrakte voorgekom het, is kovalent geïmmobiliseer op hoë digtheid poli-etileen (HDPE) en poliviniel chloried (PVC) skyfies. Die P1 en NP1 ekstrakte wat op die HDPE skyfies aangebring is, het die aanhegting van die P. aeruginosa selle met ≥ 87% (plaattellings) en ≥ 64% (geen kopieë) verminder, terwyl die aanhegting van die E. faecalis selle met ≥ 96% (plaattellings) en ≥ 87% (geen kopieë) verminder is. Die P1 en NP1 ekstrakte wat op die PVC skyfies aangebring is, het die aanhegting van die P. aeruginosa selle met ≥ 81% (plaattellings) en ≥ 99% (geen kopieë) verminder, maar vir E. faecalis is daar slegs ‘n minimale vermindering van die selle opgemerk. Terwyl dit aanbeveel word dat biomateriale getoets moet word vir antibesoedeling potensiaal teen gemengde mikrobiese gemeenskappe en dat serratamoliede en glukosamien verwante verbindings geïmmobiliseer moet word op materiaal wat gebruik word in die water, kos en mediese industrie, wys hierdie voorlopige resultate ook dat die P1 en NP1 ekstrakte aangewend kan word as ʼn voorkomings maatreël wat moontlik die vorming van biofilms op polimeriese materiaal kan vertraag.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Serratia marcescens -- Pathogenesis, Secondary metabolites, Antimicrobial -- Testing, Antifouling, Metabolomics, Serrawettins, Glucosamine -- Derivatives, UCTD