Effectiveness of using a magnetic spectrograph with the Trojan Horse method

dc.contributor.authorManwell, S.en_ZA
dc.contributor.authorParikh, A.en_ZA
dc.contributor.authorChen, A. A.en_ZA
dc.contributor.authorDe Sereville, N.en_ZA
dc.contributor.authorAdsley, P.en_ZA
dc.contributor.authorIrvine, D.en_ZA
dc.contributor.authorHammache, F.en_ZA
dc.contributor.authorStefan, I.en_ZA
dc.contributor.authorLongland, R. F.en_ZA
dc.contributor.authorTomlinson, J.en_ZA
dc.contributor.authorMorfuace, P.en_ZA
dc.contributor.authorLe Crom, B.en_ZA
dc.date.accessioned2019-10-24T10:51:45Z
dc.date.available2019-10-24T10:51:45Z
dc.date.issued2018
dc.descriptionCITATION: Manwell, S., et al. 2018. Effectiveness of using a magnetic spectrograph with the Trojan Horse method. Journal of Physics: Conference Series, 940:012046, doi:10.1088/1742-6596/940/1/012046.en_ZA
dc.descriptionThe original publication is available at https://iopscience.iop.orgen_ZA
dc.description.abstractThe Trojan Horse method relies on performing reactions in a specific kinematic phase space that maximizes contributions of a quasi-free reaction mechanism. The hallmark of this method is that the incident particle can be accelerated to high enough energies to overcome the Coulomb barrier of the target, but once inside the target nucleus the relative motion of the clustered nuclei allows the reaction of interest to proceed at energies below this Coulomb Barrier. This method allows the experimentalist to probe reactions that have significance in astrophysics at low reaction energies that would otherwise be impossible due to the vanishing cross section. Traditionally the Trojan Horse method has been applied with the use of silicon detectors to observe the reaction products. In this study we apply the Trojan Horse method to a well studied reaction to examine the potential benefits of using a splitpole magnetic spectrograph to detect one of the reaction products. We have measure the three body 7Li(d,αn)α reaction to constrain the energy 7Li(d,α)α cross section. Measurements were first made using two silicon detectors, and then by replacing one detector with the magnetic spectrograph. The experimental design, limitations, and early results are discussed.en_ZA
dc.description.urihttps://iopscience.iop.org/article/10.1088/1742-6596/940/1/012046
dc.description.versionPublisher's versionen_ZA
dc.format.extent4 pages : illustrations (some colour)en_ZA
dc.identifier.citationManwell, S., et al. 2018. Effectiveness of using a magnetic spectrograph with the Trojan Horse method. Journal of Physics: Conference Series, 940:012046, doi:10.1088/1742-6596/940/1/012046en_ZA
dc.identifier.issn1742-6596 (online)
dc.identifier.issn1742-6588 (print)
dc.identifier.otherdoi:10.1088/1742-6596/940/1/012046
dc.identifier.urihttp://hdl.handle.net/10019.1/106720
dc.language.isoen_ZAen_ZA
dc.publisherIOP Publishingen_ZA
dc.rights.holderAuthors retain copyrighten_ZA
dc.subjectTrojan Horse methoden_ZA
dc.subjectMagnetic spectrographsen_ZA
dc.subjectNucleien_ZA
dc.subjectNuclear physics -- Researchen_ZA
dc.titleEffectiveness of using a magnetic spectrograph with the Trojan Horse methoden_ZA
dc.typeConference Paperen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
manwell_effectiveness_2018.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: