Thermal performance of foam concrete structural façade elements with cavities

Date
2020-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The housing backlog in South Africa is an ever growing problem. Efforts are put together to study this problem and to reacha sustainable economical solution. Increased interest in the use of foam concrete in the building environment leads to renewed research in its use in structural housing elements where outside temperatures are the main influencing factor.Foam concrete is a low density andlightweight material withexcellent thermal properties. The Centre for Development of Sustainable Infrastructure has worked on increasing durability and strength of foam concrete while still maintaining a low density and 3Dprintingofthis low density material. This study focusses on the detailed analysis of foam concrete cavity walls in terms of the cavity geometry and sizes for thermal comfort.Parameters that greatly influence the thermal performance of foam concrete include its material density and its thermal conductivity. Other parameters includeits porosity and effective pore size, specific heat, moisture content, core temperature rises and radiation inside the pores. These parameters also havean influence on each other.In some existing theoretical models pore volume fractions of the pore structure matrix are used to determine the effective thermal conductivity of foam concrete.Heat exchange between the environment and the concrete surface occurs through convectionand radiation and heat exchange that happens inside the concrete material occurs through conduction. In foam concrete, convection and radiation also takes place in the pores of the material. These heat transfer principles are analysed throughfinite element modelling of foam concrete wall sections.An existing 3D printed foam concrete wall with air cavities isanalysed usingfinite elements to determine the effect of conduction, convection and radiation on the thermal performance of the wall. A heat flux of 342 W/m2isapplied on one side(the outside)of the wall section in different heat transfer analysis cases. When convection and radiation isincluded on the outer sides of the wall sectionand conduction in the wall section, the outside temperature is41.798°C and the inside temperature is20.216°C. Heat istransferred through the foam concrete only and not throughthe air cavities which resultsin a non-uniformheat transfer. When the effects of cavity radiation isadded to the air cavities, the outside temperature is40.690°C and the inside temperature is21.407°C.A more uniform heat transfer occurs through the wall. When heat transfer through cavity convection is also added, the outside temperature is 40.540°C and the inside temperature is 21.573°C. The slight decrease in the outside temperature is due to the release of some heat in the first cavity and as heat gathers closerto the inside of the wall section, the inside temperature increases slightly compared to when only cavity radiation is added tothe wall section. When only heat transfer through conduction in the foam concrete and in the air cavities are modelled, the outside temperature is 42.022°C and the inside temperature is 20.407°C. Here it is evident that the effects of cavity radiation andcavity convection are neglected. The effect of different cavity sizesand geometriesof walls with equal total thicknessesisalso researched. For fixed distances between rectangular cavities, the inside temperature is reducedby increasing the number of cavities. More cavities resultin a reduced cavity thickness and thus a reduced void ratio which is the ratio between the total thickness of the air cavities and the total thickness of the wall. However, when a wall sectionwith one setthickness between cavitiesand another wall section with another set thickness between cavities, are compared, the different void ratios as a result of the different thicknesses between cavities, can result in similar inside temperatures. Thus, a trend of reduced efficiency is suggested.An analytical verification is done on the numerical results of some of the wall sections with rectangular cavities. A thermal resistance networkis usedwhichonly accounts for conduction of thewall and the air cavities. Results are 3% higher than the numerical results.It is thus concluded that the effect of cavity radiation and to a lesser extent cavity convection should not be neglected. Negligence ofthe effect of cavity radiation and cavity convection may lead tothe prediction of a betterthermal performance results than the reality. Itis also concluded that cavity walls with more cavities rather than less, and thinner cavities giverise to an increased thermal performance.
AFRIKAANSE OPSOMMING: Die behuisingsagterstand in Suid-Afrikably ‘n groeiende probleem. Daar is gesamentlike pogings om die probleem te bestudeer en‘n volhoubare ekonomiese oplossing te vind. Dit veroorsaak onder andere verhoogde belangstelling in die gebruik van skuimbeton in die behuisingsomgewing asook nuwe navorsing oordie gebruik daarvan as strukturele behuisingselemente,waar buite-temperature ‘n bepalende rol speel.Skuimbeton is ‘n lae digtheid, liggewig materiaal met uitstekende termiese eienskappe. Die Sentrum vir Ontwikkeling van Volhoubare Infrastruktuurwerk daaraan om die duursaamheid en sterkte van skuimbeton te verhoog terwyl lae digtheid steeds behou word, en ook aan die 3D druk van diéliggewig materiaal. Hierdie studie fokus op die gedetailleerde analise van die geometrie en grootte van skuimbeton mure met holtes vir termiese gemak.Parameters wat die termiese gedragvan skuimbeton grootliks beïnvloed, sluit die materiaaldigtheid en termiese geleidingsvermoëin. Porositeit, die effektiewe poriegroottes, spesifieke hitte, voginhoud, kerntemperatuurstygingsen radiasie binne die porieë beïnvloed ook die termiese gedrag.Hierdie parameters het ook ‘n invloed op mekaar. Bestaande teoretiese modelle wat die effektiewe konduktiwiteit bepaal, sluit porie struktuur-matrikse in, waar die porievolumefraksiesbepaal word.Hitte-uitruiling wat tussen die omgewing en die beton-oppervlakte plaasvind, gebeurdeur konveksie, en radiasie en hitte-uitruilingwat binne die betonmateriaalplaasvind, gebeur deur konduksie. In skuimbeton vind konveksie en radiasie ook plaas in die porieë. Hierdie hitte-uitruilingsmeganismes word ge-analiseer in die eindige elementmodellering van skuimbeton muurdele. ‘n Bestaande 3D-gedrukte skuimbetonmuur met lugholtes wordontleed met eindige elemente om die effek van konduksie, konveksie en radiasie op die termiese gedrag van die muur te bepaal. Hitte van 342 W/m2word aan die buitekant van die muurdeel toegepas vir die ontleding van verskillende hitte-uitruilingsgevalle. Wanneerkonveksie en radiasie op die buitekante van die muurdeel toegepas word, en konduksie binne-in die muurdeel,is die buitenste temperatuur 41.798°C en die binneste temperatuur 20.216°C. Hitte wat dus net oorgedra word deur die skuimbeton en nie ook deur die lugholtes nie, lei tot ‘n nie-eenvormige hitte-oordrag. Wanneer die effek van radiasie indie lugholtes bygevoeg word, is die buitenste temperatuur 40.690°C en die binneste temperatuur 21.407°C. ‘n Meer eenvormige hitte-oordrag vind dan plaas deur die muur. Wanneer die effek van konveksie in die lugholtes ook bygevoegword, is die buitenste temperatuur 40.540°C en die binneste temperatuur 21.573°C. Daar is ‘n effense afname in die buitenste temperatuur as gevolg van die hitte wat in die eerste holte vrygestel word,en namate die hitte nader aan die binnekant van die muurgedeelte versamel, verhoog die binne-temperatuur effens, in vergelyking met wanneer slegsradiasie in die lugholtes bygevoeg word. Wanneer daar net hitte-uitruiling deur konduksie in die skuimbeton van die lugholtes gemodelleer word, is die buitenste temperatuur 42.022°Cen die binneste temperatuur 20.407°C. Hier is dit duidelik dat die effek van radiasie en konveksie in dielugholtes nie in ag geneem word nie.Die effek van verskillende groottes en geometrieë lugholtesvan muremet gelyke totale diktes,word ook bestudeer. Vir ‘n vaste afstand tussen reghoekige lugholtes, word die binne-temperatuur verminder deur die hoeveelheid lugholtes te vermeerder. Dit het ‘n dunner lugholte tot gevolg en dus ‘n laer holte-tot-skuimbeton verhouding. ‘n Holte-tot-skuimbeton verhouding word gedefinieer as die verhouding tussen die totale dikte van die lugholtes en die totale dikte van die muur‘n Muur met een vaste afstand tussen lugholtes en ‘n muur met ‘n ander vaste afstand tussen lugholtes het verskillende holte-tot-skuimbeton verhoudings, maar kan steeds dieselfde binne-temperatuur hê. (of eerder: Wanneer 'n muurgedeelte met een vaste dikte tussen holtes en 'n ander muurgedeelte met 'n ander dikte tussen holtes vergelyk word, kan die verskillende leemteverhoudings as gevolg van die verskillende dikte tussen holtes egter lei tot soortgelykebinnetemperature. ‘n Tendens vir afname in effektiwiteit word dus voorgestel. ‘n Analitiese verifikasie is ook gedoen op die numeriese resultate van sommige van die muurdele met reghoekige lugholtes. ‘n Termiese weerstandnetwerkis gebruik wat net konduksie van die muur en die lugholtes in ag neem. Resultate is 3.082% hoër as die numeriese resultate.Daar word dus tot die gevolgtrekking gekom datdie effek van radiasie in lugholtes en,tot ‘n mindere mate,konveksie in lugholtes, nie geïgnoreer kan word nie. Wanneer hierdie hitte-uitruilingsmeganismes wel geïgnoreer word, kan die voorspelde resultate beter termiese gedrag gee as in werklikheid. Verder moet mure eerder meer lugholtes hê as minder en dunner lugholtes gee aanleiding tot ‘n toename in termiese gedrag.
Description
Thesis (MEng)--Stellenbosch University, 2020.
Keywords
Foamed material, Thermal performance, Cavities, UCTD, Sustainable development, Lightweight construction
Citation