A holonic human cyber-physical system in healthcare
dc.contributor.advisor | Kruger, K | en_ZA |
dc.contributor.advisor | Basson, AH | en_ZA |
dc.contributor.author | Defty, TW | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. | en_ZA |
dc.date.accessioned | 2022-11-18T10:30:31Z | en_ZA |
dc.date.accessioned | 2023-01-16T12:52:33Z | en_ZA |
dc.date.available | 2022-11-18T10:30:31Z | en_ZA |
dc.date.available | 2023-01-16T12:52:33Z | en_ZA |
dc.date.issued | 2022-11 | en_ZA |
dc.description | Thesis (MEng) -- Stellenbosch University, 2022. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: The fourth industrial revolution (I4.0) aims to enhance operational performance and promote interconnectivity between system components. Labour-intensive industries which are reliant on humans to perform tasks along with automation and integrated equipment are typically classified as Human Cyber-Physical Systems (HCPSs). Many I4.0 developments within HCPSs lack the appropriate consideration and integration of humans, resulting in performance inefficiencies, quality concerns, and under-utilisation. Healthcare is one such industry, with challenges due to a lack of integration developments which are exacerbated by limited resources and high patient volumes. The objective of this thesis is the development of a holonic HCPS for healthcare. These holonic HCPS developments address challenges in healthcare through the application of Human-System Integration (HSI) principles and requirements. HSI aims to enhance human intelligence and cooperation within digitised environments. HCPSs within this study are defined by human, physical and digital components that interact in a complex manner to achieve overall system goals. An ambulatory clinic case study was selected to study the complex interactions between system components and actors. This thesis presents a Representation-Communication-Interfacing (RCI) framework to better define HSI and guide the development and evaluation of the HSI maturity in HCPSs. A holonic system approach is selected, using the RCI framework, to improve the maturity of HSI developments in healthcare. This thesis presents a structured design process for holonic systems using the Activity-Resource-Type-Instance (ARTI) architecture and the Biography-Attribute-Schedule-Execution (BASE) architecture. The design process is presented in response to a lack of available implementation details expressed in reviewed holonic applications. The developed holonic HCPS is evaluated experimentally, to showcase how the system meets the requirements and enhances the HSI maturity of the ambulatory case study. The evaluation shows that the holonic HCPS effectively integrates humans, resulting in improved operational efficiencies and lower workloads experienced by humans. The RCI framework offers valuable guidance for elevating the human component to the cyber layer, improving the autonomy and cooperability of humans in the system and easing the reconfigurability of the system. The holonic design process guides the system development by standardising the partitioning of system components and interactions into distinct holons. Furthermore, this design process reduces the development complexity and time. The holonic HCPS demonstrates how HSI developments can improve clinic workflow efficiencies, aid decision-making, improve the traceability of activities and reduce the workload for healthcare practitioners. | en_ZA |
dc.description.abstract | AFRIKAANS OPSOMMING: Die vierde industriële revolusie (I4.0) het ten doel om operasionele prestasie te verbeter en interkonnektiwiteit tussen stelselkomponente te bevorder. Arbeidsintensiewe nywerhede wat op mense staatmaak om take saam met outomatisering en geïntegreerde toerusting uit te voer, word tipies geklassifiseer as menslike kuber-fisiese stelsels (Human Cyber-Physical Systems, HCPS'e). Baie I4.0-ontwikkelings binne HCPS'e het nie die gepaste oorweging en integrasie van mense nie, wat lei tot prestasie-ondoeltreffendheid, kommer oor kwaliteit en onderbenutting. Gesondheidsorg is een so 'n bedryf, wat deur uitdagings geteister word weens 'n gebrek aan integrasie-ontwikkelings wat vererger word deur beperkte hulpbronne en hoë pasiëntvolumes. Die doel van hierdie tesis is die ontwikkeling van 'n holoniese HCPS vir gesondheidsorg. Hierdie holoniese HCPS-ontwikkeling spreek uitdagings in gesondheidsorg aan deur die toepassing van die beginsels en vereistes van mens-stelsel-integrasie (Human-System Integration, HSI). HSI het ten doel om menslike intelligensie en samewerking binne gedigitaliseerde omgewings te verbeter. HCPS'e word binne hierdie studie gedefinieer deur menslike, fisiese en digitale komponente wat op 'n komplekse wyse in wisselwerking tree om algehele stelseldoelwitte te bereik. ’n Ambulante kliniekgevallestudie is gekies om die komplekse interaksies tussen sisteemkomponente en akteurs te bestudeer. Hierdie tesis bied 'n raamwerk aan vir verteenwoordiging-kommunikasie-koppelling (Representation-Communication-Interfacing, RCI) om HSI beter te definieer en die ontwikkeling en evaluering van die HSI-volwassenheid in HCPS'e te verbeter. 'n Holoniese-sisteembenadering word gekies, met behulp van die RCI-raamwerk, om die volwassenheid van HSI-ontwikkelings in gesondheidsorg te verbeter. Hierdie tesis bied 'n gestruktureerde ontwerpproses vir holoniese stelsels aan deur gebruik te maak van die Aktiwiteit-Hulpbron-Tipe-Instansie (Activity-Resource-Type-Instance, ARTI) argitektuur en die Biografie-Kenmerk-Skedule-Uitvoering (Biography-Attribute-Schedule-Execution, BASE) argitektuur. Die ontwerpproses word aangebied in reaksie op 'n gebrek aan beskikbare implementeringsbesonderhede wat in die oorsig van holoniese toepassings uitgevind word. Die ontwikkelde holoniese HCPS word eksperimenteel geëvalueer, om te wys hoe die stelsel aan die vereistes voldoen en die HSI-volwassenheid van die ambulante gevallestudie verbeter. Die evaluering bewys dat die holoniese HCPS mense effektief integreer, wat lei tot verbeterde operasionele doeltreffendheid en laer werkladings wat deur mense ervaar word. Die RCI-raamwerk bied waardevolle leiding om die menslike komponent na die kuberlaag te verhef, die outonomie en samewerking van mense in die stelsel te verbeter en die herkonfigureerbaarheid van die stelsel te vergemaklik. Die holoniese ontwerpproses lei die stelselontwikkeling deur die verdeling van stelselkomponente en -interaksies in afsonderlike holons te standaardiseer. Verder verminder hierdie ontwerpproses die ontwikkelingstyd en kompleksiteit. Die holoniese HCPS demonstreer hoe HSI-ontwikkelings kliniekwerkvloeidoeltreffendheid kan verbeter, besluitneming kan help, die naspeurbaarheid van aktiwiteite verbeter en die werklading vir gesondheidsorgpraktisyns kan verminder. | af_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | xvi, 119 pages : illustrations | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/126148 | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Cooperating objects (Computer systems) | en_ZA |
dc.subject | Automation -- Human factors | en_ZA |
dc.subject | Medical technology | en_ZA |
dc.subject | Human-computer interaction | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | A holonic human cyber-physical system in healthcare | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- defty_holonic_2022.pdf
- Size:
- 5.25 MB
- Format:
- Adobe Portable Document Format
- Description: