Berekening van a posteriori-verdeling in Bayes-analise : toepassing in 'n betroubareheidstelsel wat afwisselend gebruik word

dc.contributor.authorYadavalli, V. S. S.en_ZA
dc.contributor.authorMostert, P. J.en_ZA
dc.contributor.authorBekker, A.en_ZA
dc.contributor.authorBotha, M.en_ZA
dc.date.accessioned2012-02-03T14:14:26Z
dc.date.available2012-02-03T14:14:26Z
dc.date.issued2002
dc.descriptionThe original publication is available at http://www.satnt.ac.zaen_ZA
dc.descriptionCITATION: Yadavalli, V. S. S. et al. 2002. Berekening van a posteriori-verdeling in Bayes-analise : toepassing in 'n betroubareheidstelsel wat afwisselend gebruik word. 21(3):a231, doi:10.4102/satnt.v21i3.231.
dc.description.abstractBayesian estimation is presented for the stationary rate of disappointments, D∞, for two models (with different specifications) of intermittently used systems. The random variables in the system are considered to be independently exponentially distributed. Jeffreys’ prior is assumed for the unknown parameters in the system. Inference about D∞ is being restrained in both models by the complex and non-linear definition of D∞. Monte Carlo simulation is used to derive the posterior distribution of D∞ and subsequently the highest posterior density (HPD) intervals. A numerical example where Bayes estimates and the HPD intervals are determined illustrates these results. This illustration is extended to determine the frequentistical properties of this Bayes procedure, by calculating covering proportions for each of these HPD intervals, assuming fixed values for the parameters.en_ZA
dc.description.abstractDie Bayes-beraming van die stasionêre tempo van teleurstellings, D∞, vir twee modelle (met verskillende spesifikasies) van stelsels wat afwisselend gebruik word, word voorgestel. Daar word veronderstel dat die stogastiese veranderlikes van die stelsel onafhanklik eksponensiaal verdeel is. Jeffrey se a priori-verdeling word vir die onbekende parameters aanvaar. Die komplekse en nieliniêre definisie van D∞ beperk inferensie in albei modelle. Monte Carlo-simulasie word gebruik om die a posteriori-verdeling van D∞ en daarna die hoogste a posteriori-digtheidsintervalle (HPD) af te lei. ’n Numeriese voorbeeld waarin Bayes-beramers en die HPD-intervalle bereken word, illustreer hierdie resultate. Die frekwentistiese eienskappe van hierdie Bayes-prosedure word bepaal deur oordekkingsproporsies te bereken vir elk van hierdie HPD-intervalle vir vaste waardes van die parameters.
dc.description.versionPublishers' Versionen_ZA
dc.format.extent5 pages
dc.identifier.citationYadavalli, V. S. S. et al. 2002. Berekening van a posteriori-verdeling in Bayes-analise : toepassing in 'n betroubareheidstelsel wat afwisselend gebruik word. 21(3):a231, doi:10.4102/satnt.v21i3.231.en_ZA
dc.identifier.issn0254-3486 (print)
dc.identifier.issn2222-4173 (online)
dc.identifier.otherdoi:10.4102/satnt.v21i3.231
dc.identifier.urihttp://hdl.handle.net/10019.1/19563
dc.language.isoafen_ZA
dc.publisherAOSISen_ZA
dc.rights.holderAuthors retain copyrighten_ZA
dc.subjectBayesian statistical decision theoryen_ZA
dc.titleBerekening van a posteriori-verdeling in Bayes-analise : toepassing in 'n betroubareheidstelsel wat afwisselend gebruik wordaf_ZA
dc.title.alternativeComputation of posterior distribution in Bayesian analysis - application in an intermittently used reliability systemen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
yadavalli_berekening_2002.pdf
Size:
124.83 KB
Format:
Adobe Portable Document Format
Description:
Publishers' Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.95 KB
Format:
Item-specific license agreed upon to submission
Description: