The development of a preliminary design process for the conversion of micro gas-turbine engine to a turboshaft configuration

dc.contributor.advisorVan der Spuy, S. J.en_ZA
dc.contributor.advisorVan Eck, H.en_ZA
dc.contributor.authorSchroder, Brandonen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.en_ZA
dc.date.accessioned2023-03-02T12:05:10Z
dc.date.accessioned2023-05-18T07:04:48Z
dc.date.available2023-03-02T12:05:10Z
dc.date.available2023-05-18T07:04:48Z
dc.date.issued2023-03
dc.descriptionThesis (MEng) -- Stellenbosch University, 2023.en_ZA
dc.description.abstractENGLISH SUMMARY: Recent developments in gas turbine technology have resulted in exciting new prospects in the field of micro gas turbine systems, specifically for turboshaft applications. Although the various empirical correlations associated with the design of such systems have proven to be reliable, they neglect to account for the performance matching requirements of the existing architecture. This study presents a preliminary design process for the power turbine stage of a derivative two spool turboshaft configuration based on the CAT 250 TJ micro gas turbine engine. The proposed approach used mean-line empirical models to design the power turbine geometry and estimate its performance for given operating conditions. Since these operating conditions would need to align with the performance behaviour exhibited by the turboshaft configuration, engine modelling software was employed to generate a representative model of the designed system. This entailed the physical testing and subsequent performance modelling of the unmodified turbojet engine to evaluate the component-specific behaviour. The interdependence between the empirical relations and the engine model drove the performance matching process. However, it also necessitated the use of an iterative approach by which these models were simultaneously developed until their exhibited characteristics matched. Simulations of the final power turbine stage design demonstrated a maximum isentropic efficiency of 88 % with a power off-take of 37 kW at design point conditions. The behaviour approximated by the engine model correlated well with the performance of the power turbine stage which was simulated using Computational Fluid Dynamics (CFD). These results demonstrate that the proposed methodology is able to generate an efficient design which matches the performance of a given engine model.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Onlangse ontwikkelings in gasturbinetegnologie het opwindende nuwe vooruitsigte op die gebied van mikrogasturbinestelsels tot gevolg gehad, spesifiek vir turbo-astoepassings. Alhoewel die verskillende empiriese korrelasies wat met die ontwerp van sulke stelsels geassosieer word, as betroubaar bewys is, laat hulle na om rekening te hou met die werksverrigtingpassingsvereistes van die bestaande argitektuur. Hierdie studie bied ’n voorlopige ontwerpproses aan vir die kragturbinestadium van ’n afgeleide tweespoel-turbo-askonfigurasie gebaseer op die CAT 250 TJ mikrogasturbine-enjin. Die voorgestelde benadering het empiriese modelle gebruik om die kragturbine-geometrie te ontwerp en sy werkverrigting vir gegewe bedryfstoestande te skat. Aangesien hierdie bedryfstoestande in lyn sou moes wees met die werkverrigtinggedrag wat deur die turboas-konfigurasie vertoon word, is enjinmodelleringsagteware gebruik om ’n verteenwoordigende model van die ontwerpte stelsel te genereer. Dit het die fisiese toetsing en daaropvolgende werksverrigtingmodellering van die ongemodifiseerde turbostraalenjin behels, om die komponent-spesifieke gedrag te evalueer. Die interafhanklikheid tussen die empiriese verwantskappe en die enjinmodel het die werksverrigtingpassingsproses gedryf. Dit het egter ook die gebruik van ’n iteratiewe benadering genoodsaak waardeur hierdie modelle gelyktydig ontwikkel is totdat hul vertoonde eienskappe ooreenstem. Simulasies van die finale kragturbinestadiumontwerp het ’n maksimum isentropiese doeltreffendheid van 88 % getoon met ’n kraguitset van 37 kW by ontwerppunttoestande. Die benaderde gedrag deur die enjinmodel, het goed gekorreleer met die werkverrigting van die kragturbinestadium wat met behulp van berekeningsvloeistofdinamika gesimuleer is. Hierdie resultate demonstreer dat die voorgestelde metodologie in staat is om ’n doeltreffende ontwerp te genereer wat ooreenstem met die werkverrigting van ’n gegewe enjinmodel.af_ZA
dc.description.versionMasters
dc.format.extentxix, 116 pages : illustrations, includes annexures
dc.identifier.urihttp://hdl.handle.net/10019.1/127111
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch University
dc.rights.holderStellenbosch University
dc.subject.lcshAircraft gas-turbinesen_ZA
dc.subject.lcshAirplanes -- Turbojet enginesen_ZA
dc.subject.lcshAircraft gas-turbines -- Design and constructionen_ZA
dc.subject.nameUCTD
dc.titleThe development of a preliminary design process for the conversion of micro gas-turbine engine to a turboshaft configurationen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
schroder_development_2023.pdf
Size:
17.34 MB
Format:
Adobe Portable Document Format
Description: