Development of a radiation resistant communication node for satellite sub-systems

dc.contributor.advisorBarnard, Arnoen_ZA
dc.contributor.authorThesnaar, Emile Jacobusen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.en_ZA
dc.date.accessioned2014-04-16T17:29:45Z
dc.date.available2014-04-16T17:29:45Z
dc.date.issued2014-04en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2014.en_ZA
dc.description.abstractENGLISH ABSTRACT: Within a complex electronic system, sub-system communication forms the backbone of the functionality of any satellite. It allows multiple processors to run simultaneously and data to be shared amongst them. Without it, a single processor would have to control the entire satellite. Not only would such a design then be overly complicated, but the processor would also not have sufficient capacity to service all the components efficiently. Furthermore the detrimental effects that radiation have on integrated circuits are well documented and can be anything from a single bit flip to a complete integrated circuit failure. If not repaired, a failure on a sub-system communication bus could lead to the loss of the entire satellite. Die goal is to create more radiation resistant Controller-Area-Network (CAN) node. Since a full triple modular redundant design will have a large footprint and high power consumption, a combination of techniques will be applied and tested. The goal is to achieve improved footprint utilisation over triple modular redundancy, while still maintaining good resistance to Single Event Upsets (SEU). By applying simulation, it was sufficiently proven that the implementation of the individual techniques used functioned according to expectations. These techniques included error detection and correction using Hamming Codes, single event transient filter and triple modular redundancy. Having applied these mitigation techniques, the footprint of the CAN controller increased by only 116%. Simulation showed that the Error Detection and Correction and Triple Modular Redundancy worked effectively with the CAN controller, and that the CAN controller could function as originally intended. Using radiation testing, the design proved to be more resistant to SEUs than the unmitigated CAN controller. It was thus shown that through using a combination of mitigation techniques, it is possible to develop an optimal design with a high level of resistance against Single Event Upsets, utilizing a smaller footprint than implementing Triple Modular Redundancy.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Sub-stelsel kommunikasie vorm die basis van die funksionaliteit in ’n komplekse elektroniese stelsel soos ’n satelliet. Dit skep die vermoë om veelvoudige verwerkers gelyktydig te laat funksioneer en inligting tussen hulle te deel. Sonder sub-stelsel kommunikasie, sal ’n enkele verwerker die hele sateliet moet beheer. Dit sal nie net die hele ontwerp oorkompliseer nie, maar die verwerker sal ook nie genoeg kapisteit hê om al die komponente effektief te diens nie. Die newe-effekte van bestraling op geïntegreerde stroombane is goed gedokumenteer en kan wissel van ’n enkele omgekeerde bis, tot die vernietiging van die geïntegreerde stroombaan. Indien die fout in die kommunikasiestelsel nie herstel word nie, kan dit lei tot die verlies van die hele sateliet. Die doel is om ’n meer bestraling bestande Controller-Area-Network (CAN) nodus te skep. Aangesien ’n volle drie-dubbele-modulêre-oortollige ontwerp ’n baie groot area beslaan en hoë krag verbruik het, gaan ’n kombinasie van versagting tegnieke toegepas en ge-evalueer word. Die doel is om beter area benutting as die drie-dubble-modulêre-oortollige ontwerp te kry, terwyl ’n goeie weerstand teen foute behoue bly. Deur middel van simulasies is voldoende bewyse gelewer dat die implimentasie van die individuele versagting tegnieke soos verwag funktioneer. Hierdie tegnieke sluit in, fout opsporing en regstelling deur middel van Hamming kodes, enkele geval oorgangs verskynsel filter asook drie-dubbele-modulêre-oortollige ontwerp. Nadat versagting meganismes toegepas is, het die area verbruik van die CAN beheerder toegeneem met slegs 116%. Simulasies het bewys dat Fout Opsporing en Regstelling en Drie-Dubbele-Modulêre-Oortollige ontwerp tegnieke binne die CAN beheerder korrek funktioneer, terwyl die CAN beheerder self funktioneer soos dit oorspronklik gefunksioneer het. Deur middel van bestralingstoetse, is dit bewys dat die ontwerp meer bestand is teen foute geïnduseer deur bestraling as die onbeskermde CAN beheerder. Dit is dus bewys dat deur gebruik te maak van verskeie versagting tegnieke dit moontlik is om ’n optimale ontwerp te implimenteer, met ’n hoë weerstand teen foute, maar met ’n laer area verbruik as die van ’n Drie-dubbele-Modulêre-Oortollige ontwerp.af_ZA
dc.format.extentxvi, 128 p. : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/86510
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectArtificial satellites -- Control systemsen
dc.subjectRadiation Mitigationen
dc.subjectController Area Network (Computer network)en
dc.subjectShielding (Radiation)en
dc.subjectDissertations -- Electrical and electronic engineeringen_ZA
dc.subjectUCTD
dc.subject.otherTheses -- Electrical and electronic engineeringen
dc.titleDevelopment of a radiation resistant communication node for satellite sub-systemsen
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesnaar_development_2014.pdf
Size:
9.79 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.99 KB
Format:
Plain Text
Description: