Synthesis and characterisation of hairy poly(lactic acid) nanoparticles
Date
2021-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The encapsulation of active pharmaceutical ingredients (APIs) within drug delivery systems Such as polymeric nanoparticles (PNPs) vastly improves the therapeutic efficiency of the incorporated APIs. PNPs synthesised using block copolymers, constituting a hydrophilic and hydrophobic block segment, such as poly(lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG), are efficient drug delivery systems. The hydrophobic block copolymer segment is incorporated into the core of the PNP and the hydrophilic block segment makes up the hairy corona of the PNP, aiding in stabilisation of the nanocarriers against aggregation in solution. Poly(N-vinyl pyrrolidone) (PVP) and poly(styrene-alt-maleic acid) (SMA) are attractive alternatives for the hydrophilic corona of PLA based nanoparticles. Unlike PEG, PVP is stable against lyophilisation, whilst SMA provides ample opportunity for post polymerisation functionalisation via the maleic anhydride (MAnh) units of the parent poly(styrene-alt-maleic anhydride) (SMAnh) copolymer. A method for the synthesis of PLA-b-PVP and PLA-b-SMA, via a combination of ring opening polymerisation (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerisation, is presented. Two different PLA macro chain transfer agents (CTAs) were successfully synthesised via ROP and subsequent post-polymerisation chain end functionalisation. Both PLA macro-CTAs were successfully chain extended to yield PLA-b-PVP and PLA-b-SMA copolymers, which were fully characterised via ATR-FTIR spectroscopy, 1H NMR spectroscopy, size exclusion chromatography (SEC) and DOSY NMR spectroscopy. The xanthate mediated RAFT polymerisation of PVP, using a thermal initiator, at elevated temperatures can lead to the occurrence of side reactions. One such side reaction is the cleavage of the xanthate chain end due to its thermal lability, leading to loss of control over the RAFT polymerisation. An alternative method of PVP synthesis was therefore introduced which made use of amine-peroxide redox polymerisation (APRP) as an alternative method for radical production. A combination of two different tertiary amines and benzoyl peroxide (BPO) was used as the redox initiating pair. The first amine utilised was 4-(dimethylamino)pyridine (DMAP) and the second was N-(4-methoxyphenyl)pyrrolidine (MPP). MPP/BPO allowed for faster rates of polymerisation to be realised compared to DMAP/BPO. The APRP mediated RAFT synthesis of PVP was also investigated and allowed for some control over the polymerisation to be achieved. Each block copolymer underwent nanoprecipitation to yield monodisperse nanoparticles (NPs) ranging in size between 60 and 220 nm. PLA-b-PVP NP diameters could be tuned by variation of the organic solvent utilised during nanoprecipitation and PLA-b-SMA NP diameters could be tuned via variation of the block copolymer concentration. The lipophilic fluorescent dye DiI could be encapsulated within PLA-b-PVP and PLA-b-SMA NPs successfully and these fluorescent NPs were used in a preliminary cell uptake study. Both hairy PVP and SMA NPs were taken up successfully by H9c2 cells.
AFRIKAANSE OPSOMMING: Die inkapseling van aktiewe farmaseutiese bestanddele (API's) in geneesmiddelafleweringstelsels soos polimeer nanopartikels (PNP's) verbeter die terapeutiese doeltreffendheid van die geïnkorporeerde API's aansienlik. PNP's wat met behulp van blok kopolimere gesintetiseer word, en hidrofilies en hidrofobiese bloksegmente vorm, soos poli(melksuur)-blok-poli(etileenglikol) (PLA-b-PEG), is doeltreffende stelsels vir aflewering van geneesmiddels. Die hidrofobiese blok kopolymeer segment is in die kern van die PNP opgeneem en die hidrofiliese bloksegment vorm die harige korona van die PNP, wat help om die nanopartikels te stabiliseer teen die samevoeging in die oplossing. Poli(N-vinylpyrrolidon) (PVP) en poli(styreen-alt-maleïensuur) (SMA) is aantreklike alternatiewe vir die hidrofiliese korona van PLA-gebaseerde nanopartikels. In teenstelling met PEG, is PVP stabiel teen lyofilisasie, terwyl SMA geleentheid bied vir funksionering na polimerisasie via die maleine anhidried (MAnh) eenhede van die oorspronklike poli(styreen-alt-maleïnes anhidried) (SMAnh) kopolymeer. 'n Metode vir die sintese van PLA-b-PVP en PLA-b-SMA, via 'n kombinasie van ringopening-polimerisasie (ROP) en omkeerbare addisionele fragmentasie-kettingoordrag (RAFT) polimerisasie, word aangebied. Twee verskillende PLA-makro-kettingoordragmiddels (CTA's) is suksesvol gesintetiseer deur middel van ROP gevolg deur funksionalisering van die ketting-einde na polimerisasie. Albei PLA makro-CTA's is suksesvol uitgebrei om PLA-b-PVP en PLA-b-SMA kopolimere op te lewer. Die polimere is volledig gekarakteriseer met ATR-FTIR-spektroskopie, 1H NMR-spektroskopie, grootte-uitsluitingschromatografie (SEC) en DOSY NMR-spektroskopie. Die xanthaat-gemedieerde RAFT polimerisasie van PVP, met behulp van 'n termiese inisieerder, by verhoogde temperature kan tot newe-reaksies lei. Een so 'n newe-reaksie is die veloor van die xanthaat kettingeinde as gevolg van die termiese labiliteit en lei tot die verlies van beheer oor die RAFT-polimerisasie. Daarom is 'n metode van PVP-sintese ingestel wat gebruik maak van amien-peroksied redoks polimerisasie (APRP) as 'n alternatiewe metode vir radikale produksie. 'n Kombinasie van twee verskillende tersiêre amiene en benzoylperoksied (BPO) is gebruik as die redoks-inisieerpaar. Die eerste amien wat gebruik is was 4-(dimetielamino) piridien (DMAP) en die tweede was N-(4-metoksifeniel) pirrolidien (MPP). MPP / BPO het toegelaat dat vinniger polimerisasie tempo's realiseer in vergelyking met DMAP / BPO. Die APRP-gemedieerde RAFT-sintese van PVP is ook ondersoek en het toegelaat dat 'n mate van beheer oor die polimerisasie verkry kan word. Elke blok kopolymeer het nanoprecipitasie ondergaan om monodisperse nanopartikels (NP's) te lewer wat wissel tussen 60 en 220 nm. PLA-b-PVP NP-diameters kan beheer word deur die variasie van die organiese oplosmiddel wat tydens nanoprecipitasie gebruik word en PLA-b-SMA NP-diameters kan beheer word deur variasie van die blok kopolymeer konsentrasie. Die lipofiele fluoresserende kleurstof DiI was suksesvol in PLA-b-PVP en PLA-b-SMA NP's saamgevat en hierdie fluorescerende NP's is in 'n voorlopige sel opname studie gebruik. Beide harige PVP en SMA NPs was suksesvol deur H9c2 selle opgeneem.
AFRIKAANSE OPSOMMING: Die inkapseling van aktiewe farmaseutiese bestanddele (API's) in geneesmiddelafleweringstelsels soos polimeer nanopartikels (PNP's) verbeter die terapeutiese doeltreffendheid van die geïnkorporeerde API's aansienlik. PNP's wat met behulp van blok kopolimere gesintetiseer word, en hidrofilies en hidrofobiese bloksegmente vorm, soos poli(melksuur)-blok-poli(etileenglikol) (PLA-b-PEG), is doeltreffende stelsels vir aflewering van geneesmiddels. Die hidrofobiese blok kopolymeer segment is in die kern van die PNP opgeneem en die hidrofiliese bloksegment vorm die harige korona van die PNP, wat help om die nanopartikels te stabiliseer teen die samevoeging in die oplossing. Poli(N-vinylpyrrolidon) (PVP) en poli(styreen-alt-maleïensuur) (SMA) is aantreklike alternatiewe vir die hidrofiliese korona van PLA-gebaseerde nanopartikels. In teenstelling met PEG, is PVP stabiel teen lyofilisasie, terwyl SMA geleentheid bied vir funksionering na polimerisasie via die maleine anhidried (MAnh) eenhede van die oorspronklike poli(styreen-alt-maleïnes anhidried) (SMAnh) kopolymeer. 'n Metode vir die sintese van PLA-b-PVP en PLA-b-SMA, via 'n kombinasie van ringopening-polimerisasie (ROP) en omkeerbare addisionele fragmentasie-kettingoordrag (RAFT) polimerisasie, word aangebied. Twee verskillende PLA-makro-kettingoordragmiddels (CTA's) is suksesvol gesintetiseer deur middel van ROP gevolg deur funksionalisering van die ketting-einde na polimerisasie. Albei PLA makro-CTA's is suksesvol uitgebrei om PLA-b-PVP en PLA-b-SMA kopolimere op te lewer. Die polimere is volledig gekarakteriseer met ATR-FTIR-spektroskopie, 1H NMR-spektroskopie, grootte-uitsluitingschromatografie (SEC) en DOSY NMR-spektroskopie. Die xanthaat-gemedieerde RAFT polimerisasie van PVP, met behulp van 'n termiese inisieerder, by verhoogde temperature kan tot newe-reaksies lei. Een so 'n newe-reaksie is die veloor van die xanthaat kettingeinde as gevolg van die termiese labiliteit en lei tot die verlies van beheer oor die RAFT-polimerisasie. Daarom is 'n metode van PVP-sintese ingestel wat gebruik maak van amien-peroksied redoks polimerisasie (APRP) as 'n alternatiewe metode vir radikale produksie. 'n Kombinasie van twee verskillende tersiêre amiene en benzoylperoksied (BPO) is gebruik as die redoks-inisieerpaar. Die eerste amien wat gebruik is was 4-(dimetielamino) piridien (DMAP) en die tweede was N-(4-metoksifeniel) pirrolidien (MPP). MPP / BPO het toegelaat dat vinniger polimerisasie tempo's realiseer in vergelyking met DMAP / BPO. Die APRP-gemedieerde RAFT-sintese van PVP is ook ondersoek en het toegelaat dat 'n mate van beheer oor die polimerisasie verkry kan word. Elke blok kopolymeer het nanoprecipitasie ondergaan om monodisperse nanopartikels (NP's) te lewer wat wissel tussen 60 en 220 nm. PLA-b-PVP NP-diameters kan beheer word deur die variasie van die organiese oplosmiddel wat tydens nanoprecipitasie gebruik word en PLA-b-SMA NP-diameters kan beheer word deur variasie van die blok kopolymeer konsentrasie. Die lipofiele fluoresserende kleurstof DiI was suksesvol in PLA-b-PVP en PLA-b-SMA NP's saamgevat en hierdie fluorescerende NP's is in 'n voorlopige sel opname studie gebruik. Beide harige PVP en SMA NPs was suksesvol deur H9c2 selle opgeneem.
Description
Thesis (MSc)--Stellenbosch University, 2021.