Interpretable multi-label classification by means of multivariate linear regression

dc.contributor.authorBierman, Suretteen_ZA
dc.date.accessioned2019-05-10T12:53:20Z
dc.date.available2019-05-10T12:53:20Z
dc.date.issued2019
dc.descriptionCITATION: Bierman, S. 2019. Interpretable multi-label classification by means of multivariate linear regression. South African Statistics Journal, 53(1):1-13.
dc.descriptionThe original publication is available at https://journals.co.za
dc.description.abstractIn this paper, the potential of using a multivariate regression approach in order to obtain interpretable output in a multi-label classification problem is investigated. We focus in our analysis on extensions of ordinary multivariate regression which take into account informative dependencies amongst labels. It is found that the regression approaches make a valuable contribution insofar as the importance of input variables for given labels can be evaluated. An empirical study facilitates comparison of the performance of the regression approaches in multi-label classification and, in terms of several evaluation measures, shows that they are also largely competitive with state-of-the-art multi-label classification procedures.en_ZA
dc.description.urihttps://journals.co.za/content/journal/10520/EJC-14af67f7cb
dc.description.versionPost-print
dc.format.extent13 pages ; illustrations
dc.identifier.citationBierman, S. 2019. Interpretable multi-label classification by means of multivariate linear regression. South African Statistics Journal, 53(1):1-13
dc.identifier.issn0038-271X (print)
dc.identifier.issn1996-8450 (online)
dc.identifier.urihttp://hdl.handle.net/10019.1/106261
dc.language.isoen_ZAen_ZA
dc.publisherSouth African Statistical Association
dc.rights.holderAuthor retains copyright
dc.subjectTransformations (Mathematics)en_ZA
dc.subjectMultivariate linear regressionen_ZA
dc.subjectMultivariate analysisen_ZA
dc.subjectMulti-label classificationen_ZA
dc.titleInterpretable multi-label classification by means of multivariate linear regressionen_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bierman_interpretable_2019.pdf
Size:
837.15 KB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: