Analysis of hydroformylation catalysis mechanisms of rhodium catalyst precursors by computational and instrumental means.

Date
2021-05
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The most industrially prevalent hydroformylation catalysts are based mainly on cobalt or rhodium with various combinations of carbonyl, halide or tertiary phosphine ligands and derivatives thereof. Recently, catalyst designs have branched out to include nitrogenous ligands such as pyridines, imines, triazoles and pyrazoles as well as multidentate combinations of either nitrogen, oxygen and/or tertiary phosphine donor ligands. This dissertation focuses on the mechanistic pathways of hydroformylation catalyst in absence of a detectable hydride intermediate. Due to the transient nature and low abundance of the catalytic intermediates, the study is focused primarily on in situ and in silico modelling of proposed mechanistic pathways. In order to investigate the kinetic trans effect in transition metals an example reaction of the transformation of [RhCl6]3􀀀 was investigated. It has been well documented that the transformation of [RhCl6]3􀀀 to [Rh(H2O)6]3+ is slow (equilibration takes more than 10 years) in acidic solutions at room temperature. However, on the addition of base to the solution, the [RhCl6]3􀀀 complex initially forms the [RhCl5(OH)]3􀀀 complex which then rapidly converts to [Rh(OH)6]3􀀀. We show using computational methods that the transformation of the [RhCl5(OH)]3􀀀 to [Rh(OH)6]3􀀀 occurs via labilisation of the trans chloride to form a 5 coordinate [RhCl4(OH)]2􀀀 species that can readily react with another hydroxide. The transformation to a hydroxido complex causes a cascade of rapid transformations to form the final [Rh(OH)6]3􀀀 complex. The domain based localized pair natural orbital coupled cluster singles doubles and virtual triples (DLPNO-CCSD(T)) was used to calculated accurate transition state energies that agreed well with the experimental data and corroborated our proposed dissociative ligand exchange mechanism. Hydroformylation is a well understood catalytic reaction for the more prevalent cobalt and rhodium phosphine based catalysts that follow a pathway where the catalyst spends most of the catalytic cycle in the Co(I) or Rh(I) oxidation state, respectively. However, we show an alternative pathway where oxidative addition of hydrogen directly to the precursor forms a Rh(III) dihydride which remains in the octahedral geometry throughout most the catalytic cycle. The oxidative addition of hydrogen is shown to form low abundances of transient rhodium dihydride species by computational chemistry, explaining the lack of spectroscopically detectable species in situ. In addition, it is shown via computational fragment analysis and a local energy decomposition scheme that the double electron transfer to form the dihydride occurs on relaxation from the transition state towards the dihydride octahedral complex and not at the transition state itself. The overall catalytic mechanism for a the [[N-(pyridine-_N-methyl)-N0-(3-imine-_N-p-tolyl)]rhodium(I)(_4-1; 5-cyclooctadiene)]+ complex was investigated using in situ 1H NMR in conjunction with UHPLC-MS. The spectroscopic results indicated possible transamination of the imine ligand by reaction with wither the acetone solvent or the formed aldehyde product. Computational chemistry was used to model the proposed hydroformylation mechanism for the [[N-(pyridine-_N-methyl)-N0-(3-imine-_N-p-hydroxyphenyl)]dicarbonylrhodium(I)]+ and [N--(pyridine-_N-methyl)-N0-(3-imine-_N-p-hydroxyphenyl)]chlorocarbonylrhodium(I) complexes, using the [Rh(CO)4]+ and [RhCl(CO)3] complexes as model precursors. The computational results indicated that the overall mechanism is feasible with a dissociative step at each point except that of the alkene addition. Each 5-coordinate intermediate of the proposed dissociative mechanism was stabilised by agostic interaction between the vacant site and the hydrogen of the proximate coordinated alkyl or acyl ligand. Throughout the mechanism, competition is seen between the chloride, hydride, alkyl and acyl ligands. This trans influence was found to destabilise the complex isomers where these ligands are in the trans position. No steric or chiral specificity is expected in these complexes from computationally calculated geometries as there is no hindrance to the coordination of either the linear or branched alkyl ligand explaining the lack of n-iso specificity in experimental results.
AFRIKAANSE OPSOMMING: Die vollopste hidroformilasiekataliste is hoofsaaklik gebaseer op rodium- of kobaltmetaalkerne met karboniel-, halied- of tersi^ere fos_enligande en afgeleides van sulke ligande. Meer onlangse ontwikkelings in hidroformilasiekatalisontwerpe sluit stikstoigande soos piridiene, imiene, triazole en pirisole in, sowel as kombinasies van multidentaat stikstof-, suurstof- en fos_endonorligande. Hierdie verhandeling fokus prim^er op die meganistiese padwe e van hidroformilasiekataliese in die afwesigheid van 'n opspoorbare hidriedtussenspesie. As gevolg van die kort lewe van die tussenspesies en hul lae relatiewe hoeveelhede, is die studie hoofsaaklik gebaseer op in situ en in sil-ico modellering van die voorgestelde meganistiese padwe e. Om die kinetiese transe_ek in oorgangsmetale te bestudeer is daar na die transformasie van die [RhCl6]3􀀀 kompleks gekyk. Dit is well bekend dat die trasformasie van die [RhCl6]3􀀀 kompleks na die [Rh(H2O)6]3+ kompleks baie stadig is (ekwilibrasie neem meer as 10 jaar in suur oplossing by kamertemperatuur). Wanneer die reaksie plaasvind in alkaliese oplossings sit die [RhCl6]3􀀀 kompleks aanvanklik om in die [RhCl5(OH)]3􀀀 kompleks wat dan vinnig reageer om die [Rh(OH)6]3􀀀 kompleks te vorm. Ons wys met berekeninge dat die transformasie van die [RhCl5(OH)]3􀀀 kompleks na die [Rh(OH)6]3􀀀 gebeur deur die verswakking van die trans metaal-chloried binding om 'n 5-ko ordinaat kompleks te vorm wat dan 'n ketting van reaksies aan die gang sit om die [Rh(OH)6]3􀀀 kompleks te vorm. Die \domain based localized pair natural orbital coupled cluster singles doubles and virtual triples (DLPNO-CCSD(T))" metode is gebruik om akkurate oorgangstoestandenergie e te bereken wat goed ooreen stem met eksperimentele resultate en ons voorgestelde dissosiatiewe meganisme te staaf. Hidroformielasie is 'n goed verstaande katalitiese mechanisme vir die vollop kobalt en rodium fos_en gebasseerde katalisvoorlopers wat meeste van die katalitiese pad in die Co(I) of Rh(I) toestand verkeer. Ons stel 'n alternatiewe pad voor waar die kompleks direk omgesit word na 'n Rh(III)dihidried wat dan meeste van die katalitiese pad in the Rh(III) oksidasietoestand en oktahedrale geometrie verkeer. Die oksidatiewe waterstofbyvoegingsreaksie word uitgewys om lae hoeveelhede van kortstondige rodiumdihidriedspesies te vorm deur kwantumchemieberekeninge. Die berekeninge verduidelik die tekort aan spektroskopiese bewyse vir dihidried spesies in situ. Fragmentele analiese van die komplekse lanks die reaksie pad met energieontbindingsanalieses dui daarop dat die oordrag van die twee elektrone om die hidriede te vorm weg van die oorgangstoestand en na die ontspanning van die kompleks na die oktahedrale geometrie plaasvind en nie by die oorgangstoestand self nie. Die gehele katalietiese meganisme vir die \[[N-(pyridine-_N-methyl)- N0-(3-imine-_N-p-tolyl)]rhodium(I)(_4-1; 5-cyclooctadiene)]+" kompleks is bestudeer deur die gebruik van in situ 1H KMR sowel as \UHPLC-MS". Die spektroskopiese resultate dui op moontlikke transiminasie reaksies tussen die imien ligand en die asetoon oplossmiddel of die aldehied produk. Kwantumchemieberekininge is gebruik om die gehele katalitiese padweg to modelleer vir die [[N-(pyridine-_N-methyl)-N0-(3-imine-_N-p-hydroxyphenyl)]dicarbonylrhodium(I)]+ en [N-(pyridine-_N-methyl)-N0-(3-imine-_N-p-ydroxyphenyl)]chlorocarbonylrhodium(I) komplekse tesame met die [Rh(CO)4]+ en [RhCl(CO)3] komplekse as model katalitiese voorlopers. Die resultate dui daarop dat die gehele meganisme soos voorgestel met dissosiatiewe stappe werkbaar is behalwe vir die alkeenbyvoegingsreaksie wat sal moet met 'n uitruilingsreaksie gebeur. Al die ander 5- o ordinaattussenspesies word gestabiliseer deur agostiese interaksies tussen die le e possisie op die metaal kern en die aanstaande alkiel of asiel ligand se waterstof. Reg deur die meganisme word transkompetiese tussen die chloried, hidried, alkiel en asiel ligande sterk waargeneem wat lei daartoe dat die isomere waar hierdie ligande in trans posisies tot mekaar is minder stabiel is. Geen steriese of chirale voorkeur word verwag vanaf die kwantumchemieberekeninge nie aangesien daar geen belemmering is van die line ere of vertakte alkiel ligande se ko ordinasie reaksie nie. Dit stem ooreen met die tekort aan n-iso voorkeur in eksperimentele resultate.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Citation