Predicting water quality variables

dc.contributor.advisorBrink, Willieen_ZA
dc.contributor.advisorWilms, Josefine M.en_ZA
dc.contributor.authorElmahdi, Reemen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Department of Mathematical Sciences (Applied Mathematics).en_ZA
dc.date.accessioned2020-02-23T18:08:52Z
dc.date.accessioned2020-04-28T12:17:38Z
dc.date.available2020-02-23T18:08:52Z
dc.date.available2020-04-28T12:17:38Z
dc.date.issued2020-03
dc.descriptionThesis (MSc)--Stellenbosch University, 2020.en_ZA
dc.description.abstractENGLISH ABSTRACT: Water is an important substance for all of life, and can be used in domestic, agricultural and industrial activities. Water quality determines the usefulness of water for particular purposes, and can be defined in terms of time-varying water quality variables such as dissolved oxygen, turbidity, temperature, pH, specific conductance, chlorophylls, nitrate and salinity. Different mathematical and statistical models have been used for the prediction of time-series data. Machine learning can also be used when enough data is available. In particular, artificial neural networks (ANNs) have demonstrated success in solving such problems. They are conceptually simple and easily implemented. In this thesis,an overview of two ANN s tructures is presented for solving the problem of predicting water quality variables. Specifically, multilayer perceptrons (MLPs) and long short-term memory (LSTM) networks are presented. Experiments are conducted on Hog Island water quality variables and the results of the models are compared using various accuracy metrics like root mean squared error. It is found that LSTM performs better than MLP across most of the accuracy metrics.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Water is belangrik vir alle vorme van lewe, en kan in huishoudelike, landbou-en nywerheidsaktiwiteite gebruik word. Waterkwaliteit bepaal die bruikbaarheid van water vir spesifieke doeleindes, en kan gedefinieer word in terme van tydafhanklike waterkwaliteitsveranderlikes soos opgeloste suurstof, troebelheid, temperatuur, pH, spesifieke geleiding, chlorofille, nitraat en soutge-halte. Verskillende wiskundige en statistiese modelle is al gebruik vir die voorspelling van tydreeksdata. Masjienleer kan ook g ebruik word as daar genoegdata beskikbaar is. In die besonder het kunsmatige neurale netwerke sukses behaal met die oplos van sulke probleme. Sulke netwerke is konseptueel eenvoudig en maklik om te implementeer. In hierdie tesis word ’n oorsig van twee neurale netwerkstrukture aangebied vir die voorspelling van waterkwaliteitsveranderlikes. In die besonder word meerlaag-perseptrone (MLP’s) en lang-korttermyngeheue (long short-term memory, LSTM) netwerke aangebied. Eksperimente is uitgevoer op Hog Eiland waterkwaliteitsveranderlikes en die resul-tate van die modelle word met behulp van verskillende akkuraatheidsmetrieke vergelyk, soos wortelgemiddelde kwadraatfout. Daar word gevind dat LSTM beter presteer as MLP volgens meeste van die akkuraatheidsmetrieke.af_ZA
dc.description.versionMastersen_ZA
dc.format.extentv, 78 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/108072
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch University.en_ZA
dc.rights.holderStellenbosch University.en_ZA
dc.subjectWater quality -- Managementen_ZA
dc.subjectMachine learningen_ZA
dc.subjectNeural networks (Computer science)en_ZA
dc.subjectPrediction of water qualityen_ZA
dc.subjectTime-series analysis -- Computer programsen_ZA
dc.subjectVariables (Mathematics)en_ZA
dc.subjectUCTD
dc.titlePredicting water quality variablesen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
elmahdi_predicting_2020.pdf
Size:
3.36 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: