Concentrating Solar Power (CSP) technology adoption in South Africa
dc.contributor.advisor | Brent, Alan C. | en_ZA |
dc.contributor.advisor | Dinter, Frank | en_ZA |
dc.contributor.advisor | De Kock, Imke | en_ZA |
dc.contributor.author | Craig, Omotoyosi | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering. | en_ZA |
dc.date.accessioned | 2018-10-12T07:21:09Z | |
dc.date.accessioned | 2018-12-07T06:47:50Z | |
dc.date.available | 2018-10-12T07:21:09Z | |
dc.date.available | 2018-12-07T06:47:50Z | |
dc.date.issued | 2018-12 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2018. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: South Africa (SA) aims to generate 42 per cent of its electricity from renewable energy technology sources by 2030. To achieve this target, the government started the Renewable Energy Independent Power Producer Procurement Programme (REI4P) to allow easy integration of renewable energy technologies into the existing energy mix. The country has an abundant solar resource, and the potential to harvest this resource through concentrating solar power (CSP) has been proven. In 2010, concentrating solar power (CSP) was one of the major renewable energy technologies that was prioritised by SA, and as a result 600 MW of CSP have been bought in the REI4P, and this includes seven plants that have been, or are being, built. Conversely, recent events have shown that the future of CSP in South Africa looks bleak, as the government’s recent Integrated Resource Plan (IRP) updates gave no allocation to new CSP plants beyond 2030. Several factors have contributed to the chasm in the adoption of CSP technology in the country. Very few CSP plants are connected to the grid, and there is limited research and literature on its learning effect and economics of scale. Also, the impacts of this technology on South Africa’s trade and the local manufacturing industries, as well as on the local research, development, and innovation community, have not been investigated to date. This research presents a detailed analysis of the CSP technologies in South Africa in terms of the existing technology adoption models and diffusion strategies, used by government and its agencies, to improve the development and deployment of these technologies. The study also analyses the state of CSP, concerns, and complex issues limiting the deployment of the technology in the country. The study then uses mathematical relationship to determine the progress ratio, the learning effect, and the likely future of CSP in the country. The impact of the CSP technology on economics and trade were then quantified and a technology specific roadmap was developed. The innovation analysis carried out on CSP technologies in South Africa shows that its tariff is currently higher than that of other major RETs (wind and PV), and that the innovation experience of the CSP technology is incremental, as each subsequent plant was an improvement on previous facilities elsewhere. The development of research into innovation, and eventually into market products of CSP systems, is improving with a closer relationship and working together of the stakeholders. This progress, however, is slow, because of the limited knowledge in identifying and understanding the important activities and policy instruments that can aid the prioritisation of important actions to forge better relationships among stakeholders, and fast track the deployment of CSP. The expert elicitation analysis on the impact of RD&D funding on the present and future cost of electricity from CSP presents a RD&D investment strategy that will foster technological improvement and adoption of CSP in the country. Three RD&D funding scenarios are presented and analysed, and an allocation procedure was developed. The results show that strategic policies, laws and the right funding can help South Africa to fully maximize its CSP resources potential to foster cost reduction and market viability of its solar innovations. The result from the systems dynamics analysis shows that improved support for research is the most effective way to open new methods and ways in which the CSP technologies can be deployed, which will foster further CSP adoption in in the country. Further analysis, based on the data from literature and existing plants, highlights the current state of CSP in South Africa for capacity and costs. The economic indicators of CSP, which include LCOE, LPOE, DNI, and specific costs, are discussed, and the most realistic future cost of CSP in SA is presented. Limitations to the learning effect of CSP in SA are identified; existing principles were used with limited data to develop the learning rate, progress ratio, and cost reduction rate of CSP. The study shows that there are no existing patterns in the capital costs of the existing CSP plants in SA for technology, size, solar multiple, site location, or storage capacity; this makes the experience curve analysis of the CSP industry difficult. The solar field cost, which is the most significant capital cost, was analysed independently to give an idea of what the CSP experience curve might look like. The CSP learning rate in SA was calculated, the future of capital costs was then determined, and the likely experience curve for CSP in SA was presented. The assessment of the SA local manufacturing capabilities for CSP related services identified strength and the challenges of the sector. It further estimated the economic and social benefits of improvements, including the employment opportunities, and the overall impacts on trade and economy. A technology specific roadmap was developed in this study to present a framework for the medium term CSP adoption outlook in South Africa. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Suid Afrika (SA) beoog om 42 persent elektrieiteit deur middel van herwinbare energie tegnologie te produseer teen 2030. Om hierdie doelwit te bereik het die regering ‘n program: “Renewable Energy Independent Power Producer Programme (REI4P)” van stapel gestuur om die integrasie van herwinbare energie met huidige bronne te vergemaklik. Die land het oorvloedige sonkrag en die potensiaal om dit te benut vir energie deur middel van konsentrasie van sonenergie “concentrating solar power” (CSP) is reeds bewys. In 2010 was CSP een van die hoof geprioritiseerde herwinbare tegnologieë in Suid Afrika en is 600 MW deur die REI4P aangekoop. Dit sluit sewe aanlegte wat gebou, of in aanbou is, in. Teenstrydig daarmee lyk die toekoms van CSP in Suid Afrika swak, aangesien die onlangese opdatering van die regering se “Integrated Resource Plan” (IRP) geen toekenning vir ‘n nuwe CSP aanleg na 2030 insluit nie. Verskeie faktore het aanleiding gegee tot hierdie gaping in aanvaarding van die CSP tegnologie. Baie min CSP aanlegte is gekoppel aan die nasionale rooster en daar is beperkte navorsing en inligting beskikbaar wat die effek en skaalvoordele bespreek. Die impak van hierdie tegnologie op Suid Afrika se handel en plaaslike vervaardigings industrie, asook die plaaslike navorsing, ontwikkeling en innovasie was tot op datum nie ondersoek nie. Die navorsing verskaf ‘n noukeurige ontleding van die CSP tegnologieë in Suid Afrika in terme van die bestaande tegnologie aanvaardingsmodelle en diffusie strategieë wat deur die regering en agente gebruik word om die ontwikkeling en uitrol van die tegnologieë te verbeter. Die studie ontleed ook die huidige stand van CSP, bekommernisse, en komplekse twispunte wat die uitrol van die tegnologie vehinder. Die studie maak gebruik van wiskundige verhoudings om die vooruitgangsveverdeling, leereffekte, en die moontlike toekoms van CSP in die land te bepaal. Die ekonomiese- en handels effek van CSP tegnologie is bereken en ‘n spesifieke plan vir die tegnologie ontwikkel. Die innovasie-ontleding van CSP tegnologieê in Suid Afrika dui daarop dat die tariewe huidiglik hoër is as die ander hoof hernubare energie tegnologie (wind en son fotovoltaïese) en dat die innovering en ondervinding van CSP tegnologie inkrementeel is, deurdat elke nuwe aanleg ‘n vebetering was op ander fasiliteite. Die ontwikkeling van navorsing in innovasie en uiteindelike mark produkte van CSP stelsels verbeter as gevolg van die sterker verhoudings en samewerking van alle betrokke partye. Hierdie vooruitgang is stadig as gevolg van die beperkte kennis van identifikasie en verstaan van die belangrike aktiwiteite en beleidsinstrumente wat sal help met die prioritisering van die belangrike aksies om beter verhoudings tussen betrokke partye te smee, wat die uitrol van CSP sal verhaas. Die kundigheidseliseteringsontleding van die impak van RD&D befondsing van die huidige- en toekomstige koste van elektrisiteit deur CSP verskaf ‘n RD&D belegginstrategie wat tegnologiese verbetering en aanvaarding in die land sal bevorder. Drie befondsingsmoontlikhede was ontleed, word geskets en aangebied. ‘n Prosedure om dit toe te deel was ontwikkel. Die resultate toon dat strategiese beleide, wette en die regte befondsing Suid Afrika kan help om die CSP bronne ten volle te benut wat verlaagde koste en bemarkbaarheid van sonenergie innovering sal bevorder. Die resultate van die stelsel-dinamiese ontleding toon dat verbeterde ondersteuning vir navorsing die mees effektiewe manier is om nuwe metodes en maniere van implementering van CSP tegnologieë te bevorder wat sal lei tot groter aanvaarding van CSP in die land. Verdere ontleding gebaseer op die data van bestaande leesstof en aanlegte, lig die huidige status van CSP in Suid Afrika uit in terme van kapasiteit en koste. Die ekonomiese aanwysers van CSP, wat LCOE, LPOE, DNI en spesifieke koste insluit, word bespreek en die mees realistiese toekomstige koste van CSP in Suid Afrika aangebied. Beperkings van die leereffek van CSP in Suid Afrika word geïdentifiseer. Bestaande beginsels was gebruik met beperkte data om die leertempo, vooruitgangsverhouding en koste verminderings tempo van CSP te bepaal. Die studie toon dat daar geen koste patrone vir die kapitale uitleg van CSP aanlegte in Suid Afrika ten opsigte van tegnologie, grootte, spieël veldkapasiteit, posisie, of stoorkapasiteit bestaan nie. Dit bemoeilik die ondervindingskurwe ontleding van die CSP industrie. Die koste van die sonarea, wat die grootste kapitale uitleg is, was onafhanklik ontleed om ‘n aanduiding van wat die ondervindingskurwe mag voorstel te bekom. Die CSP leertempo in Suid Afrika was bereken, die toekomstige kapitaal uitgawes bepaal, en die bes moontlike ondervindingskurwe vir CSP in Suid Afrika aangebied. Die assesering van die plaaslike vervaardigingsvermoeëns vir CSP verwante dienste het sterkpunte en uitdagings van die sektor ge-identifiseer. Dit het verder die ekonomiese en sosiale voordele van verbeterings, insluitend werksgeleenthede, en oorkoepelende effek op die handel en ekonomie geskat. ‘n Tegnologie-spesifieke plan was in die studie ontwikkel om ‘n raamwerk vir die medium termyn CSP aanvaardingsvooruitskatting in Suid Afrika daar te stel en aan te bied. | af_ZA |
dc.format.extent | 213 pages : illustrations | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/104852 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | South Africa | en_ZA |
dc.subject | Solar power | en_ZA |
dc.subject | Renewable resource integration | en_ZA |
dc.subject | Electric power production -- Procurement | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Concentrating Solar Power (CSP) technology adoption in South Africa | en_ZA |
dc.type | Thesis | en_ZA |