The value of different reconstruction algorithms for quantification of FDG PET brain imaging

Date
2016-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY : Modern reconstruction techniques of positron emission tomography/computed tomography (PET/CT) data are optimized for whole body imaging. Such optimization is less developed for brain imaging. This study aimed at investigating the effect of different image reconstruction parameters (varying number of iterations, scan duration, relaxation parameter (smoothing levels) and the use of time of flight (TOF)) on PET/CT images with the objective of evaluating the algorithms for quantification of fluorodeoxyglucose (FDG) PET brain imaging. Materials and methods: A Philips Gemini TF Big Bore PET/CT scanner was used for acquiring the data. The study was based primarily on phantom and limited patient data for preliminary validation. Three dimensional (3D) Hoffman brain phantom (HBP) data and data of patients attending the Western Cape Academic PET/CT Centre for oncological purposes, with low probability of neurological pathology, were included in the study. The data was reconstructed using two different iterative reconstruction algorithms, row action maximum likelihood algorithm (RAMLA) and spherically symmetric basis function ordered subset algorithm (BLOB or BLOB OS), with variation in the number of iterations, scan acquisition duration, switching TOF on and off for BLOB OS and by varying the relaxation parameter. The set of output images were analyzed using MATLAB code. Results: From the HBP data, in all regions of the brain, the grey matter/white matter ratio, and the mean and the normalized mean counts increased as the number of iterations increased, reaching a plateau after 15 iterations for all algorithms. When comparing the algorithms with relaxation values λ=0.7 and λ=1.0, it was found that the latter converged faster. Overall, BLOB TOF (λ=1.0) proved to have faster convergence followed by BLOB TOF (λ=0.7). The coefficient of variation (COV) for all volumes of interest showed BLOB TOF to be superior compared to all the other algorithms. The COV results for different scan durations showed that there is minimal improvement after 5 min in high-activity regions (GM) and after 10 min in low-activity region (WM). The patient data was used as proof of principle but the numbers were too small to analyze further, as no pattern of behaviour could be identified for the different algorithms in the three patient images available. Conclusions: A higher number of iterations, such as 15, than currently used by the vendor of the PET scanner led to improved image quality for all algorithms. An acquisition time of 10 min provided an optimal trade-off between image quality and scan time irrespective of the reconstruction algorithm used. Including the TOF in the reconstruction algorithm improved the image quality, proving that TOF also improves image quality for small objects such as the brain similar to that seen for larger anatomical diameters as indicated in the literature.
AFRIKAANSE OPSOMMING : Moderne rekonstruksietegnieke van PET/RT data word geoptimaliseer vir heelliggaambeelding. Sodanige optimalisering is minder ontwikkel vir breinbeelding. Die doel van hierdie studie was om die effek van verskillende beeldrekonstruksieparameters (aantal iterasies, die duur van die skandering, veslappingsparameters (vergladdingsvlakke) en die gebruik van “tyd-van-vlug” (Engels: “time of flight” (TOF)) inligting) met PET/RT te ondersoek, om sodoende die verskillende rekonstruksie-algoritmes vir kwantifisering van FDG PET breinbeelding te evalueer. Materiaal en Metodes: ‘n Philips® Gemini TF Big Bore PET/RT is gebruik om die data te versamel. Die studie het hoofsaaklik fantoom- en beperkte pasiëntdata ingesluit. Data van ‘n 3D Hoffman breinfantoom asook van pasiënte wat die Wes-Kaapse Akademiese PET/RT Sentrum vir onkologiese ondersoeke besoek het en lae waarskynlikhheid vir neurologiese patologie gehad het, is in die studie gebruik. Die data is met twee verskillende iteratiewe rekonstruksie-algoritmes, RAMLA en BLOB OS gerekonstrueer, met variasies in die aantal iterasies, tydsduur van beeldopname, met en sonder TOF vir BLOB OS en met variasie van die verslappingsparameter. Die beelde wat verkry is, is met MATLAB kodes ontleed. Resultate: Die Hoffman breinfantoomdata het getoon dat die verhouding van grysstof tot witstof (GS/WS) vir alle areas in die brein toegeneem het met ʼn toenemende aantal iterasies en vir alle algoritmes na 15 iterasies ‘n plato bereik het. As die algoritmes met verslappingsparameters van λ=0.7 en λ=1.0 vergelyk is, is daar gevind dat (λ=1.0) vinniger as (λ=0.7) konvergeer het. Van al die algoritmes het BLOB TOF(λ=1.0) die vinnigste konvergeer, gevolg deur BLOB TOF (λ=0.7). Die variasiekoëffisiënt (VK) vir alle volumes-van-belang het getoon dat BLOB TOF beter was as die ander algoritmes wat vergelyk is. Die VK resultate vir verskillende beeldingstye het getoon dat daar in hoë aktiwiteitsareas (GS) na 5 min minimale verbetering plaasgevind het, en in lae aktiwiteitsareas (WS) na 10 min. Die pasiëntdata is as bewys van beginsel gebruik, maar die getalle was te klein vir verdere analise, omdat daar geen identifiseerbare patrone vir die verskillende algoritmes in die data van die drie pasiënte was nie. Gevolgtrekking: Meer iterasies as wat tans deur die verskaffer van die skandeerder gebruik word, byvoorbeeld 15, het tot ʼn verbetering in beeldkwaliteit vir al die algoritmes gelei. ‘n Beeldingstyd van 10 min het, onafhanklik van die rekonstruksie-algoritme, ‘n optimale kompromis tussen beeldkwaliteit en beeldingstyd gegee. Die insluiting van TOF in die rekonstruksie-algoritme het bewys dat TOF ook die beeldkwaliteit van klein organe soos die brein verbeter, soortgelyk aan wat met groter anatomiese deursnit voorwerpe ondervind word, soos ook in die literatuur aangedui is.
Description
Thesis (MSc)--Stellenbosch University, 2016.
Keywords
Tomography, Emission, UCTD, Image reconstruction, Iterative reconstruction algorithms, Brain – Imaging
Citation