Laser powder bed fusion of cemented tungsten carbide cutting tools
dc.contributor.advisor | Sacks, Natasha | en_ZA |
dc.contributor.advisor | Damm, Oliver | en_ZA |
dc.contributor.advisor | Matope, Stephen | en_ZA |
dc.contributor.author | Hagedorn-Hansen, Devon | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering. | en_ZA |
dc.date.accessioned | 2022-01-14T08:22:10Z | |
dc.date.accessioned | 2022-04-29T09:45:59Z | |
dc.date.available | 2022-01-14T08:22:10Z | |
dc.date.available | 2022-04-29T09:45:59Z | |
dc.date.issued | 2022-04 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2022. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Cemented carbides are extremely hard, wear resistant materials, and one of the most widely used tool materials in numerous manufacturing industries. Metal cutting tools are commonly manufactured from cemented carbides using standard powder metallurgy processes such as the press and sinter process. The tooling market is highly competitive and the companies with the best research and development departments have the competitive advantage when it comes to cutting edge technology. However, historically, the development process for a new cutting tool or production technology is a lengthy and costly venture. The use of laser powder bed fusion (L-PBF) for research, development, and small-batch production of cemented tungsten carbide cutting tools has not been extensively reported, and commercialisation does not seem apparent as yet. While the usage of L-PBF to produce cutting tools may be beneficial to advancing cutting tool technology, the process has many inherent drawbacks that affect part quality. However, there are many changes to the current L-PBF process that can be investigated to improve the final quality of L-PBF-produced tools before post-processing. The successful application of L PBF technology could help develop and manufacture cutting tools at an improved rate. The aim of this study was to determine and manage the influences of certain factors encountered during L-PBF of tungsten carbide cobalt (WC-Co) and their effects on specific cutting tool properties and cutting performance to produce L-PBF cutting tools that could be comparable to a conventionally produced tool. To accomplish this, three powders were analysed and investigated for their use in the L-PBF process. Then, characterisation of an existing cutting tool was performed to be used as a quality benchmark for L-PBF cutting tools. After a reasonable understanding of powders and conventional cutting tools was obtained, single track scans were performed on a tool steel base plate to understand adhesion and the feasibility of using a conventional base plate. The next stage of the study involved understanding the effects of different laser parameters and scanning strategies on the track morphology, density, hardness, and cobalt content of L-PBF produced WC-12wt%Co samples. Various parameter optimisation methods and strategies were tested and L-PBF-produced cutting tools were utilised in preliminary cutting tests to determine their cutting ability and to deduce which factors had the greatest effects on cutting contact time. The L-PBF scanning strategy was observed to be the most significant factor for successful cutting operations. A diagonal raster strategy with an 80-degree alternating rotation produced the best cutting inserts for the specific insert geometry and grade. Verification WC-12wt%Co inserts were produced with L-PBF for final cutting tests. These inserts were comparable to conventionally produced tungsten carbide inserts with respect to cutting performance indicators such as contact time and workpiece surface roughness. On average, after roughly 16M30S contact time, the L-PBF cutting tools exhibited 0.7 mm maximum flank wear versus 0.4 mm for similar conventional inserts. These results suggest that L-PBF could, one day, be a viable solution for research, developments, and small-batch production of WC-Co cutting tools. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Sinterkarbiede is uiters hard, slytasiebestand en een van die gereedskapsmateriale wat die algemeenste in talle vervaardigingsbedrywe gebruik word. Metaalsnygereedskap word gewoonlik met behulp van standaard poeiermetallurgieprosesse, soos die pers- en sinterproses, uit sinterkarbiede vervaardig. Die werktuigmark is baie mededingend en ondernemings met die beste navorsingen ontwikkelingsdepartemente, het die mededingende voordeel as dit by die nuutste tegnologie kom. Histories is die ontwikkelingsproses vir ʼn nuwe snybeitel of produksietegnologie egter ʼn lang en duur proses. Die gebruik van laser- poeierbedsamesmelting (L-PBF) vir navorsing, ontwikkeling en kleinskaalproduksie van gesementeerde-wolframkarbiedsnygereedskap is nog nie wyd gerapporteer of gekommersialiseer nie. Hoewel die gebruik van L-PBF voordelig vir die bevordering van snygereedskaptegnologie kan wees, het die proses baie inherente nadele wat die gehalte van die onderdele beïnvloed. Daar is egter baie veranderinge aan die huidige L-PBF-proses wat ondersoek kan word om die finale gehalte van L-PBF-vervaardigde gereedskap voor ná-vervaardiging te verbeter. Die suksesvolle toepassing van L-PBF-tegnologie kan help om snygereedskap vinniger te ontwikkel en te vervaardig. Die doel van hierdie studie was om die invloed van sekere faktore tydens die L-PBF van wolframkarbied-kobalt (WC-Co), en die uitwerking daarvan op spesifieke snygereedskapseienskappe en -snyprestasie te bepaal en te bestuur, om uiteindelik L-PBF-snygereedskap te vervaardig wat met ʼn konvensioneel vervaardigde werktuig vergelykbaar is. Om dit te bewerkstellig, is drie poeiers vir gebruik in die L-PBF-proses ontleed en ondersoek. Vervolgens is karakterisering van ʼn bestaande snybeitel uitgevoer om as ʼn gehaltenorm vir L-PBF-snygereedskap te dien. Nadat ʼn redelike begrip van poeiers en konvensionele snygereedskap verkry is, is enkelbaanskanderings op ʼn basisplaat van gereedskapstaal uitgevoer om die aanklewing en dus die haalbaarheid van die gebruik van ʼn konvensionele staalbasisplaat te ondersoek. Die volgende fase van die werk het die bestudering van die effekte van verskillende laserparameters en skanderingstrategieë op die baanmorfologie, digtheid, hardheid en kobaltinhoud van L-PBF geproduseerde WC-12wt%Co-monsters behels. Verskeie parameter-optimaliseringsmetodes en - strategieë is getoets en L-PBF-vervaardigde snygereedskap is in voorlopige snytoetse gebruik om hulle snyvermoë te bepaal en af te lei watter faktore die grootste effek op die snykontaktyd het. Waarneming het aangedui dat die L-PBF-skanderingstrategie die belangrikste faktor vir suksesvolle snywerk is. ʼn Diagonale rasterstrategie met ʼn wisselrotasie van 80 grade het die beste snyinvoegstukke opgelewer vir die spesifieke invoegstukgeometrie en -graad wat bestudeer is. Verdere WC-12wt%Co-snyinvoegstukke is ter bevestiging vir finale snytoetse met behulp van L PBF vervaardig. Hierdie invoegstukke was met betrekking tot snyprestasie, soos kontaktyd en oppervlakruheid van die werkstuk, met konvensioneel vervaardigde wolframkarbied-invoegstukke vergelykbaar. Na ongeveer 16M30S se kontaktyd vertoon die L-PBF-snybeitel ʼn gemiddelde flankslytasie van 0.7 mm teenoor 0.4 mm vir soortgelyke konvensionele invoegstukke. Hierdie resultate dui daarop dat L-PBF in die toekoms wel ʼn lewensvatbare oplossing vir die navorsing, ontwikkeling en kleinskaalproduksie van WC-Co-snygereedskap kan wees. | af_ZA |
dc.description.version | Doctoral | en_ZA |
dc.format.extent | xxv, 281 pages : illustrations | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/125003 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Metal-cutting tools | en_ZA |
dc.subject | Tungsten carbide | en_ZA |
dc.subject | Manufacturing processes | en_ZA |
dc.subject | 3D printed cutting tools | en_ZA |
dc.subject | Tungsten carbide cobalt cutting tools | en_ZA |
dc.subject | UCTD | en_ZA |
dc.title | Laser powder bed fusion of cemented tungsten carbide cutting tools | en_ZA |
dc.type | Thesis | en_ZA |