Automated landing of a fixed-wing unmanned aircraft onto a moving platform

dc.contributor.advisorEngelbrecht, Japie en_ZA
dc.contributor.authorParker, Mohamed Zahieren_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.en_ZA
dc.date.accessioned2023-03-03T11:39:46Zen_ZA
dc.date.accessioned2023-05-18T07:09:16Zen_ZA
dc.date.available2023-03-03T11:39:46Zen_ZA
dc.date.available2023-05-18T07:09:16Zen_ZA
dc.date.issued2023-03en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2023.en_ZA
dc.description.abstractENGLISH ABSTRACT: This thesis presents the development, implementation and practical testing of a control system that can automatically land a fixed-wing unmanned aerial vehicle (UAV) onto a moving platform. The control system consists of the flight control system and guidance control system. A landing strategy is proposed that is inspired by a real aircraft carrier landing, but is scaled down to the size of the fixed-wing UAV used in this research project. A prediction method is suggested to predict the touchdown point between the aircraft and the moving platform. A mathematical model of the fixed-wing aircraft was established to capture the aircraft’s flight dynamics. The model was used to design the flight control system. The flight control system architecture combines classical control with model predictive control to control the local states of the aircraft. The model predictive controller was added to improve the landing accuracy of the aircraft, by having improved airspeed and altitude control compared to classical controllers. The guidance control system contains a guidance algorithm, waypoint scheduler, landing position predictor, and state machine to allow the aircraft to navigate around the airfield and land on the moving platform. The control systems were then implemented in PX4 autopilot software, which together with the Gazebo simulator, was used to perform software-in-the-loop simulations to verify the control systems’ performance using a representative simulation model. A new avionics stack was developed for the physical fixed-wing UAV using commercially available hardware and open-source software. A new fixed-wing UAV was assembled by mounting the newly developed avionics stack into an existing airframe. A new moving platform was also assembled by mounting commercially available hardware onto an RC car chassis. Practical flight tests were performed using the physical UAV to validate the control system’s performance in practice. The developed control system was able to accurately land the physical fixed-wing UAV within a 3 m x 3 m static bounding box on a runway, and also on a virtual moving platform with the same dimensions travelling at 3 m/s (or 10 km/h).en_ZA
dc.description.abstractAFRIKAANS OPSOMMING: Hierdie tesis beskryf die ontwikkeling, implementering en praktiese toetsing van ’n beheerstelsel aan wat ’n vastevlerk onbemande vliegtuig outomaties op ’n bewegende platform kan land. Die beheerstelsel bestaan uit die vlugbeheerstelsel en leidingbeheerstelsel. ’n Landingstrategie word voorgestel wat ge¨ınspireer is deur ’n regte vliegdekskip landing, maar is afgeskaal tot die grootte van die vastevlerk-UAV wat in hierdie navorsingsprojek gebruik word. ’n Voorspellingsmetode word voorgestel om die raakvalpunt tussen die vliegtuig en die bewegende platform te voorspel. ’n Wiskundige model van die vastevlerkvliegtuig is ontwikkel om die vliegtuig se vlugdinamika te beskryf. Die model is gebruik om die vlugbeheerstelsel te ontwerp. Die argitektuur van die vlugbeheerstelsel kombineer klassieke beheer met modelvoorspellingsbeheer om die vliegtuig se eie toestande te beheer. Die model voorspellende beheerder is bygevoeg om die landingsakkuraatheid van die vliegtuig te verbeter, deur verbeterde lugspoed- en hoogtebeheer in vergelyking met klassieke beheerders te hˆe. Die leidingbeheerstelsel bevat ’n leidingalgoritme, wegpuntskeduleerder, landingsposisievoorspeller en toestandmasjien om die vliegtuig in staat te stel om om die vliegveld te navigeer en op die bewegende platform te land. Die beheerstelsels is toe in PX4 Autopilot sagteware ge¨ımplementeer, wat saam met die Gazebo-simulator gebruik is om sagteware-in-die-lus-simulasies uit te voer om die beheerstelsels se werkverrigting met ’n meer verteenwoordigende simulasiemodel te verifieer. ’n Nuwe avionika stelsel is ontwikkel vir die fisiese vastevlerkvliegtuie met behulp van kommersieel beskikbare hardeware en oopbronsagteware. ’n Nuwe vastevlerkvliegtuig is opgebou deur die nuutontwikkelde avionika stelsel in ’n bestaande vliegtuigraam te monteer. ’n Nuwe bewegende platform is ook opgebou deur kommersieel beskikbare hardeware op ’n RC-motoronderstel te monteer. Praktiese vlugtoetse is uitgevoer met behulp van die fisiese vliegtuig om die beheerstelsel se werkverrigting in die praktyk te valideer. Die ontwikkelde beheerstelsel kon die fisiese vastevlerkvliegtuig land binne ’n 3 m x 3 m teiken area op ’n aanloopbaan, en ook op ’n virtuele bewegende platform met dieselfde afmetings wat teen 3 m/s (of 10 km/h) beweeg.af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxx, 229 pages : illustrations.en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/127197en_ZA
dc.language.isoen_ZAen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshDrone aircraft -- Landingen_ZA
dc.subject.lcshControl line aircraften_ZA
dc.subject.lcshFlight engineeringen_ZA
dc.subject.lcshFlight controlen_ZA
dc.titleAutomated landing of a fixed-wing unmanned aircraft onto a moving platformen_ZA
dc.typeThesis en_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
parker_automated_2023.pdf
Size:
19.39 MB
Format:
Adobe Portable Document Format
Description: