Non-parametric regression modelling of in situ fCO2 in the Southern Ocean

dc.contributor.advisorMostert, Paul J.en_ZA
dc.contributor.advisorDas, Sonalien_ZA
dc.contributor.authorPretorius, Wesley Byronen_ZA
dc.contributor.otherStellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science.en_ZA
dc.date.accessioned2012-11-21T22:37:09Zen_ZA
dc.date.accessioned2012-12-12T08:07:08Z
dc.date.available2012-11-21T22:37:09Zen_ZA
dc.date.available2012-12-12T08:07:08Z
dc.date.issued2012-12en_ZA
dc.descriptionThesis (MComm)--Stellenbosch University, 2012.en_ZA
dc.description.abstractENGLISH ABSTRACT: The Southern Ocean is a complex system, where the relationship between CO2 concentrations and its drivers varies intra- and inter-annually. Due to the lack of readily available in situ data in the Southern Ocean, a model approach was required which could predict the CO2 concentration proxy variable, fCO2. This must be done using predictor variables available via remote measurements to ensure the usefulness of the model in the future. These predictor variables were sea surface temperature, log transformed chlorophyll-a concentration, mixed layer depth and at a later stage altimetry. Initial exploratory analysis indicated that a non-parametric approach to the model should be taken. A parametric multiple linear regression model was developed to use as a comparison to previous studies in the North Atlantic Ocean as well as to compare with the results of the non-parametric approach. A non-parametric kernel regression model was then used to predict fCO2 and nally a combination of the parametric and non-parametric regression models was developed, referred to as the mixed regression model. The results indicated, as expected from exploratory analyses, that the non-parametric approach produced more accurate estimates based on an independent test data set. These more accurate estimates, however, were coupled with zero estimates, caused by the curse of dimensionality. It was also found that the inclusion of salinity (not available remotely) improved the model and therefore altimetry was chosen to attempt to capture this e ect in the model. The mixed model displayed reduced errors as well as removing the zero estimates and hence reducing the variance of the error rates. The results indicated that the mixed model is the best approach to use to predict fCO2 in the Southern Ocean and that altimetry's inclusion did improve the prediction accuracy.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Die Suidelike Oseaan is 'n komplekse sisteem waar die verhouding tussen CO2 konsentrasies en die drywers daarvoor intra- en interjaarliks varieer. 'n Tekort aan maklik verkrygbare in situ data van die Suidelike Oseaan het daartoe gelei dat 'n model benadering nodig was wat die CO2 konsentrasie plaasvervangerveranderlike, fCO2, kon voorspel. Dié moet gedoen word deur om gebruik te maak van voorspellende veranderlikes, beskikbaar deur middel van afgeleë metings, om die bruikbaarheid van die model in die toekoms te verseker. Hierdie voorspellende veranderlikes het ingesluit see-oppervlaktetemperatuur, log getransformeerde chloro l-a konsentrasie, gemengde laag diepte en op 'n latere stadium, hoogtemeting. 'n Aanvanklike, ondersoekende analise het aangedui dat 'n nie-parametriese benadering tot die data geneem moet word. 'n Parametriese meerfoudige lineêre regressie model is ontwikkel om met die vorige studies in die Noord-Atlantiese Oseaan asook met die resultate van die nieparametriese benadering te vergelyk. 'n Nie-parametriese kern regressie model is toe ingespan om die fCO2 te voorspel en uiteindelik is 'n kombinasie van die parametriese en nie-parametriese regressie modelle ontwikkel vir dieselfde doel, wat na verwys word as die gemengde regressie model. Die resultate het aangetoon, soos verwag uit die ondersoekende analise, dat die nie-parametriese benadering meer akkurate beramings lewer, gebaseer op 'n onafhanklike toets datastel. Dié meer akkurate beramings het egter met "nul"beramings gepaartgegaan wat veroorsaak word deur die vloek van dimensionaliteit. Daar is ook gevind dat die insluiting van soutgehalte (nie beskikbaar oor via sateliet nie) die model verbeter en juis daarom is hoogtemeting gekies om te poog om hierdie e ek in die model vas te vang. Die gemengde model het kleiner foute getoon asook die "nul"beramings verwyder en sodoende die variasie van die foutkoerse verminder. Die resultate het dus aangetoon dat dat die gemengde model die beste benadering is om te gebruik om die fCO2 in die Suidelike Oseaan te beraam en dat die insluiting van altimetry die akkuraatheid van hierdie beraming verbeter.af_ZA
dc.format.extent161 p. : ill., maps
dc.identifier.urihttp://hdl.handle.net/10019.1/71630
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectNonparametric regressionen_ZA
dc.subjectRegression analysisen_ZA
dc.subjectNonparametric statisticsen_ZA
dc.subjectCarbon dioxide -- Antarctic Oceanen_ZA
dc.subjectDissertations -- Statistics and actuarial scienceen_ZA
dc.subjectTheses -- Statistics and actuarial scienceen_ZA
dc.titleNon-parametric regression modelling of in situ fCO2 in the Southern Oceanen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pretorius_nonparametric_2012.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: