Repairing classical ontologies using defeasible reasoning techniques
Date
2021-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY : Ontologies provide knowledge engineers with the ability to represent and encode knowledge in a formal language so that it can be reasoned over by a computer. Notable benets include the ability to source new knowledge by making statements that are implicitly deduced
explicitly available to the end-user, to classify individuals or instances and to check the
addition of new knowledge for logical consistency.
Given the nature and goal of ontologies, a successful application of ontologies relies on
(1) representing as much accurate and relevant domain knowledge as possible, (2) while
maintaining logical consistency. As the successful implementation of a real-world ontology
is likely to contain many concepts and intricate relationships between the concepts, it is
necessary to follow a methodology for debugging and rening the ontology. A myriad of
ontology debugging approaches (some of them instantiated in tools) have been developed
to help the knowledge engineer pinpoint the cause of logical inconsistencies and rectify
them in a strategic way.
Rodler (2015) and Schekotihin et al. (2018) build out the ontology debugging basics
by introducing an interactive ontology debugging methodology: this interactive ontology
debugging framework, which has also been implemented as a Prot eg e plug-in, OntoDebug,
methodically and iteratively asks users queries to narrow down the inconsistency to just
one diagnosis, at which time the user can make a more informed decision about how to
repair the diagnosis.
This approach guides the user in the debugging process. We show however that this
approach can sometimes lead to unintuitive results, which may then lead the knowledge
engineer to opt for deleting potentially crucial and nuanced knowledge. This is due to
the focus of the interactive ontology debugging approach to be on classical, monotonic
knowledge bases { and indeed, in the classical/ monotonic sense, it is only by deletion,
not extension of the knowledge base, that coherence can be obtained. However, it may at
times be desirable to deal with the unintuitive results produced by weakening rather than
deleting faulty axioms.
We provide a methodological and design foundation for weakening faulty axioms in
a strategic way using defeasible reasoning tools. Our methodology draws from Rodler's (2015) interactive ontology debugging approach which not only localises faulty axioms but
provides the knowledge engineer with a strategic way of resolving them by presenting the
root cause inconsistencies rst. We extend this approach by creating a methodology to
systematically nd con
ict resolution recommendations. Importantly, our goal is not to
convert a classical ontology to a defeasible ontology { therefore we do not use defeasible
reasoning support through, for example, the computation of rational closure. Rather, we use
the denition of exceptionality of a concept, which is central to the semantics of defeasible
description logics, and the associated algorithm (as can be found in Britz et al. 2019) to
determine the extent of a concept's exceptionality (their ranking); then, starting with the
statements containing the most general concepts (the least exceptional concepts) weakened
versions of the original statements are constructed; this is done until all inconsistencies
have been resolved.
AFRIKAANSE OPSOMMING : Ontologiee bied kennisingenieurs die vermoe om kennis in 'n formele taal voor te stel en te kodeer sodat dit deur 'n rekenaar verwerk kan word. Opvallende voordele sluit in die vermo e om nuwe kennis te verkry deur verklarings wat implisiet afgelei is vir die eindverbruiker voor te stel, om individue of gevalle te klassiseer en om die toevoeging van nuwe kennis na te gaan vir logiese konsekwentheid. Gegewe die aard en doel van ontologie e, berus 'n suksesvolle toepassing van ontologiee daarop dat (1) soveel akkurate en relevante domeinkennis as moontlik verteenwoordig word, (2) met behoud van logiese konsekwentheid. Aangesien die suksesvolle implementering van 'n industrie-standaard ontologie waarskynlik baie konsepte en ingewikkelde verhoudings tussen die begrippe sal bevat, is dit nodig om 'n metodologie te volg vir die ontfouting en verfyning van die ontologie. 'n Magdom ontologie-ontfoutingsbenaderings (sommige van hulle reeds geimplementeer) is ontwikkel om die kennisingenieur te help om die oorsaak van logiese teenstrydighede op te spoor en op 'n strategiese manier reg te stel. Rodler (2015) en Schekotihin et al. (2018) bou die basiese beginsels van ontologieontfouting op deur 'n interaktiewe ontologie-ontfoutingsmetodiek in te stel: hierdie interaktiewe ontologie-ontfoutingsraamwerk, wat ook geimplementeer is as 'n Protege plug-in, OntoDebug, vra die gebruikers iteratiewe en metodiese vrae om die teenstrydigheid tot net een diagnose te beperk, en dan kan die gebruiker 'n meer ingeligte besluit neem oor hoe om die diagnose te herstel. Hierdie benadering lei die gebruiker in die ontfoutingsproses. Ons toon egter aan dat hierdie benadering soms tot onintuitiewe resultate kan lei, wat dan kan lei tot die kennisingenieur om potensieel belangrike en genuanseerde kennis te verwyder. Dit is te wyte aan die fokus van die interaktiewe ontologie-ontfoutingsbenadering om op klassieke, monotone kennisbasis te val - en inderdaad, in die klassieke / monotone sin, is dit slegs deur skrapping, nie uitbreiding van die kennisbasis nie, dat samehang verkry kan word. Ons wys egter dat dit selfs in klassieke kennisbasisse soms wenslik kan wees om die foutiewe aksiomas in onintuitiewe resultate eerder deur verswakking as verwydering op te los. Ons bied 'n metodologiese en ontwerpbasis om foutiewe aksiomas op 'n strategiese manier te verswak deur sogenaamde defeasible redeneerinstrumente. Ons metodologie put uit Rodler se (2015) interaktiewe ontologie-ontfoutingsbenadering wat nie net foutiewe aksiomas lokaliseer nie, maar die kennisingenieur 'n strategiese manier bied om dit op te los deur eers die oorsaak-teenstrydighede aan te bied. Ons brei hierdie benadering uit deur 'n metodologie te skep om stelselmatig aanbevelings oor kon ikoplossing te vind. Wat belangrik is, is dat ons doel nie is om 'n klassieke ontologie na 'n defeasible ontologie te omskep nie - daarom gebruik ons nie 'n defeasible redenasie-ondersteuning deur byvoorbeeld die berekening van rasionele afsluiting nie. Ons gebruik eerder die denisie van uitsonderlikheid van 'n begrip, wat sentraal staan in die semantiek van defeasible beskrywingslogika, en die gepaardgaande algoritme (soos gevind in Britz et al. 2019) om die omvang van die konsep se uitsonderlikheid te bepaal (hul rangorde); dan begin ons om verswakte weergawes van die verklarings wat die mees algemene begrippe bevat (die minste uitsonderlike begrippe) voor te stel; dit word gedoen totdat alle teenstrydighede opgelos is.
AFRIKAANSE OPSOMMING : Ontologiee bied kennisingenieurs die vermoe om kennis in 'n formele taal voor te stel en te kodeer sodat dit deur 'n rekenaar verwerk kan word. Opvallende voordele sluit in die vermo e om nuwe kennis te verkry deur verklarings wat implisiet afgelei is vir die eindverbruiker voor te stel, om individue of gevalle te klassiseer en om die toevoeging van nuwe kennis na te gaan vir logiese konsekwentheid. Gegewe die aard en doel van ontologie e, berus 'n suksesvolle toepassing van ontologiee daarop dat (1) soveel akkurate en relevante domeinkennis as moontlik verteenwoordig word, (2) met behoud van logiese konsekwentheid. Aangesien die suksesvolle implementering van 'n industrie-standaard ontologie waarskynlik baie konsepte en ingewikkelde verhoudings tussen die begrippe sal bevat, is dit nodig om 'n metodologie te volg vir die ontfouting en verfyning van die ontologie. 'n Magdom ontologie-ontfoutingsbenaderings (sommige van hulle reeds geimplementeer) is ontwikkel om die kennisingenieur te help om die oorsaak van logiese teenstrydighede op te spoor en op 'n strategiese manier reg te stel. Rodler (2015) en Schekotihin et al. (2018) bou die basiese beginsels van ontologieontfouting op deur 'n interaktiewe ontologie-ontfoutingsmetodiek in te stel: hierdie interaktiewe ontologie-ontfoutingsraamwerk, wat ook geimplementeer is as 'n Protege plug-in, OntoDebug, vra die gebruikers iteratiewe en metodiese vrae om die teenstrydigheid tot net een diagnose te beperk, en dan kan die gebruiker 'n meer ingeligte besluit neem oor hoe om die diagnose te herstel. Hierdie benadering lei die gebruiker in die ontfoutingsproses. Ons toon egter aan dat hierdie benadering soms tot onintuitiewe resultate kan lei, wat dan kan lei tot die kennisingenieur om potensieel belangrike en genuanseerde kennis te verwyder. Dit is te wyte aan die fokus van die interaktiewe ontologie-ontfoutingsbenadering om op klassieke, monotone kennisbasis te val - en inderdaad, in die klassieke / monotone sin, is dit slegs deur skrapping, nie uitbreiding van die kennisbasis nie, dat samehang verkry kan word. Ons wys egter dat dit selfs in klassieke kennisbasisse soms wenslik kan wees om die foutiewe aksiomas in onintuitiewe resultate eerder deur verswakking as verwydering op te los. Ons bied 'n metodologiese en ontwerpbasis om foutiewe aksiomas op 'n strategiese manier te verswak deur sogenaamde defeasible redeneerinstrumente. Ons metodologie put uit Rodler se (2015) interaktiewe ontologie-ontfoutingsbenadering wat nie net foutiewe aksiomas lokaliseer nie, maar die kennisingenieur 'n strategiese manier bied om dit op te los deur eers die oorsaak-teenstrydighede aan te bied. Ons brei hierdie benadering uit deur 'n metodologie te skep om stelselmatig aanbevelings oor kon ikoplossing te vind. Wat belangrik is, is dat ons doel nie is om 'n klassieke ontologie na 'n defeasible ontologie te omskep nie - daarom gebruik ons nie 'n defeasible redenasie-ondersteuning deur byvoorbeeld die berekening van rasionele afsluiting nie. Ons gebruik eerder die denisie van uitsonderlikheid van 'n begrip, wat sentraal staan in die semantiek van defeasible beskrywingslogika, en die gepaardgaande algoritme (soos gevind in Britz et al. 2019) om die omvang van die konsep se uitsonderlikheid te bepaal (hul rangorde); dan begin ons om verswakte weergawes van die verklarings wat die mees algemene begrippe bevat (die minste uitsonderlike begrippe) voor te stel; dit word gedoen totdat alle teenstrydighede opgelos is.
Description
Thesis (MA)--Stellenbosch University, 2021.
Keywords
Ontologies (Information retrieval) -- Maintenance and repair, Defeasible reasoning -- Technique, Debugging in computer science, UCTD