Techno-economic and sustainability models for integration of cassava waste-based biorefineries into cassava starch processes based on process simulation and a systems modelling approach

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Cassava crop high starch yields, accompanied by its tolerance to drought/low soil nutrients, have increased research attention towards the crop’s adoption as a potential food security and economic empowerment crop for South Africa. Widely consumed as food and livestock feed, cassava starch also has potential industrial applications in pharmaceuticals, specialty chemicals (e.g. succinic acid), ethanol, adhesive, and food derivatives (e.g. glucose syrup). Commercialization of industrial cassava starch facilities (CSF) depends on profitability and sustainable energy supply for operations. Residues generated by CSFs [cassava starch wastewater (CWW), bagasse (CB)], and cassava stalks (CS) could generate the requisite energy for cassava starch industries (CSI), thus there is potential to integrate waste-based bioenergy developments with CSFs. Cassava waste biorefineries (CWBs) for co-producing energy and high-value bio-products have been proposed as potential solutions to energy and cost limitations in CSFs. Attributed to knowledge gaps on the techno-economic feasibility (TEF) and long-term sustainability (economic + environmental + social) of such CWBs, conventional waste management schemes involve the burning of CS and anaerobic digestion of CWW & CB to produce biogas for starch drying heat, with the digestate being disposed into watercourses. This research, through Aspen Plus® process/economic modelling and SimaPro simulation, investigated the TEF and sustainability of CWBs in the South African socio-economic context, with an overall objective of contributing to knowledge towards the commercialization of CWBs. The investigated CWB scenarios include: (i) enhanced waste resource recoveries (energy, biofertilizer, water) through integrating CS into CSF waste treatment, and (ii) advanced CWBs [(I) combined heat & power, with (II) hexose-bioethanol, (III) pentose & hexose-bioethanol, (IV) pentose-bioethanol + glucose syrup, and (V) pentose-bioethanol + succinic acid)]. The results showed that combined treatment of CS (14.32 t/h) with CSF wastes (7.29 t/h DM CB + 377.83 t/h CWW) could ensure further resource recoveries, including bioelectricity (up to 31.96 MW), liquid/solid biofertilizer, and usable water, with potential energy self-sufficiency and economic enhancements for CSIs. Co-conversion of 450.89 t/h CS and CSF waste could ensure sufficient energy supplies for both CWBs and CSFs, plus 300 MW electricity (I), or 287 MW + 1.48 t/h bioethanol (II), or 121 MW + 8.95 t/h bioethanol (III), or 164 MW + 5.72 t/h bioethanol + 9.29 t/h glucose syrup (IV), or 161 MW + 5.72 t/h bioethanol + 6.9 t/h succinic acid (V). However, only scenarios (I)-(II) demonstrated economic viability, while (III)-(V) favor environmental sustainability. Revitalizing the CSI’s via integrations with the resource recovery schemes, where the recoveries are re-used in the CSFs and crop cultivations, could ensure viable circular economy strategies that may enhance sustainable industrial developments. Hence, integrating CSFs with resource recoveries or CHP (I) or CHP + hexose-bioethanol (II) represent viable strategies for the synergetic advancement of food-energy security and low-carbon economies.
AFRIKAANSE OPSOMMING: Kassawagewas se hoë styselopbrengs, gepaardgaande met sy toleransie vir droogte/lae grondvoedingstowwe, het navorsingaandag op die gewas se aanneming as ’n potensiële voedselsekuriteit en ekonomiese bemagtigingsgewas vir Suid-Afrika, verhoog. Wyd verbruik as voedsel en veevoer, het kassawastysel ook potensiële industriële toepassings in farmaseutiese produkte, gespesialiseerde chemikalieë (bv. suksiensuur), etanol, kleefmiddel, en voedselderivate (bv. glukosestroop). Kommersialisering van industriële kassawastyselfasiliteite (CSF) is afhangend van winsgewendheid en volhoubare energietoevoer vir bedryf. Residu’s gegenereer deur CSF’e (kassawastyselafvalwater (CWW), bagasse (CB)), en kassawastingels (CS) kan die nodige energie vir kassawastyselindustrië (CSI) genereer, daar is dus potensiaal om afval-gebaseerde bio-energie-ontwikkelinge met CSF’e te integreer. Kassawa afval-bioraffinaderye (CWB’e) vir koproduksie van energie en hoë-waarde bioprodukte is voorgestel as potensiële oplossings vir energie- en kostebeperkings in CSF’e. Toegeskryf aan kennisgapings van die tegno-ekonomiese uitvoerbaarheid (TEF) en lang-termyn volhoubaarheid (ekonomies + omgewing + sosiaal) van sulke CWB’s, behels konvensionele afvalbeheerskemas die verbranding van CS en anaerobiese vertering van CWW en CB om biogas vir styseldrogingshitte te produseer, met die vaste afsaksel wat verwyder word in waterlope. Hierdie navorsing, deur Aspen Plus® proses/ekonomiese modellering en SimaPro simulasie, het die TEF en volhoubaarheid van CWB’s in die Suid-Afrikaanse sosio-ekonomiese konteks ondersoek, met ’n algehele doel om tot die kennis van die kommersialisering van CWB’s by te dra. Die CWB-scenario’s wat ondersoek is behels: (i) versterkte afvalhulpbron se herwinning (energie, biokunsmis, water) deur CS in CFS-afvalbehandeling te integreer, en (ii) bevorderde CWB’s [(I) gekombineerde hitte en krag, met (II) heksosebio-etanol, (III) pentose en heksosebio-etanol, (IV) pentosebio-etanol + glukosestroop, en (V) pentosebio-etanol + suksiensuur)]. Die resultate het gewys dat gekombineerde behandeling van CS (14.32 t/h) met CFS-afval (7.29 t/h DM CB + 377.83 t/h CWW) verdere hulpbronherwinning kon verseker, insluitend bio-elektrisiteit (tot en met 31.96 MW), vloeistof/vastestof biokunsmis, en bruikbare water, met potensiële energieselfgenoegsaamheid en ekonomiese versterkings vir CSI’e. Ko-omsetting van 450.89 t/h CS en CFS-afval kan genoeg energietoevoer verseker vir beide CWB’s en CSF’e, plus 300 MW elektrisiteit (I), of 287 MW + 1.48 t/h bio-etanol (II), of 121 MW + 8.95 t/h bio-etanol (III), of 164 MW + 5.72 t/h bio-etanol + 9.29 t/h glukosestroop (IV), of 161 MW + 5.72 t/h bio-etanol + 6.9 t/h suksiensuur (V). Slegs scenario’s (I) tot (II) het ekonomiese lewensvatbaarheid getoon, terwyl (III) tot (V) ten gunste van omgewingsvolhoubaarheid was. Om nuwe lewe in die CSI’s via integrasies met die hulpbronherwinningskemas, te blaas, waar die herwinning hergebruik word in die CSF’e en gewaskweking, kan lewensvatbare sirkulêre ekonomiese strategieë verseker wat volhoubare industriële ontwikkelinge versterk. Daarom, om CSF’e met hulpbronherwinning of CHP (I) of CHP + heksose-bio-etanol (II) te integreer, verteenwoordig lewensvatbare strategieë vir die sinergistiese bevordering van voedselsekuriteit en lae-koolstof ekonomieë.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Cassava -- Refining, Sustainable agriculture -- Mathematical models, Waste products as fuel, Biomass energy, Environmental economies -- Mathematical models, Life cycles (Biology) -- Evaluation, UCTD
Citation