Decarbonising South Africa’s paratransit with hydrogen: a simulated case study
Date
2023-07-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As fuel prices climb and the global automotive sector migrates to more sustainable vehicle technologies, the future of South Africa’s minibus taxis is in flux. The authors’ previous research has found that battery electric technology struggles to meet all the mobility requirements of minibus taxis. They investigate the technical feasibility of powering taxis with hydrogen fuel cells instead. The following results are projected using a custom-built simulator, and tracking data of taxis based in Stellenbosch, South Africa. Each taxi requires around 12 kg of hydrogen gas per day to travel an average distance of 360 km. 465 kWh of electricity, or 860 m2 of solar panels, would electrolyse the required green hydrogen. An economic analysis was conducted on the capital and operational expenses of a system of ten hydrogen taxis and an electrolysis plant. Such a pilot project requires a minimum investment of € 3.8 million (R 75 million), for a 20 year period. Although such a small scale roll-out is technically feasible and would meet taxis’ performance requirements, the investment cost is too high, making it financially unfeasible. They conclude that a large scale solution would need to be investigated to improve financial feasibility; however, South Africa’s limited electrical generation capacity poses a threat to its technical feasibility. The simulator is uploaded at: https://gitlab.com/eputs/ev-fleet-sim-fcv-model.
Description
The original publication is available at: https://www.satc.org.za/conference-papers.html
Keywords
Citation
Abraham et al. 2023. Decarbonising South Africa’s paratransit with hydrogen: a simulated case study