Austral summer and winter trace metal distributions in the Southern Ocean and Antarctic seasonal sea ice

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The metabolic efficiency of carbon (CO2) sequestering microorganisms, such as marine phytoplankton, is subject to the availability of trace metal nutrients such as Manganese (Mn), Cobalt (Co) and Cadmium (Cd) among others. However, much of the Southern Ocean is characterised by a paucity of trace metals, resulting in low productivity despite excess availability of the macronutrients Nitrate (NO3), Phosphate (PO4) and Silicate (SiO4). Areas exhibiting this paradoxical condition are classified as High Nutrient Low Chlorophyll (HNLC). The paucity is related to the regional remoteness, which increases vulnerability to weak inputs via traditional sources (e.g. atmospheric dust, riverine discharge, and continental margins). Thus, regional productivity may also rely on alternative supply pathways such as internal recycling, hydrothermal vent inputs, winter resupply, and indirect inputs from the seasonal sea ice inventories. However, our understanding of these processes, and by association their impact on global carbon cycling, remains relatively limited with large gaps in the database, particularly concerning the winter state and trace metals in sea ice. This study endeavoured to constrain these poorly understood facets by reporting observations from a novel trace metal dataset spanning three research cruises (1 summer, 2 winter). This includes the first winter data for Cd (Chapter 2), and Co and Mn (Chapter 3) from within the HNLC Southern Ocean (GEOTRACES GIPY05_e transect), and the first multi-element trace metal (Mn, Fe, Co, Cu, Ni, Cd and Pb) and sympagic (sea ice) phytoplankton community data for pancake sea ice in winter (WOCE IO6 transect). Concentrations are reported for the total dissolvable (T, unfiltered) and dissolved (D, <0.2 μm) fractions. Analogous distributions of TCd and DCd were found in the austral summer across the sector, albeit in the surface (and mixed layer) where TCd > DCd owing to depletion of DCd. This results in partitioning of the Cd fractions (ΔTM = total – dissolved) as DCd is incorporated into the TCd fraction. Larger ΔCd values correlated to productivity, but further dependent on the phytoplankton community structure (diatom links) and metabolically related trace metal concentrations. Winter reoccupation of the Antarctic Circumpolar Current (ACC) revealed that TCd and DCd concentrations had increased within the mixed layer, while ΔCd values decreased (consistent with lower winter productivity). Moreover, despite elevated mixed layer concentrations in winter, and weak uptake, DCd maintained a highly predictable linear correlation to PO4 (summer = 592x – 539, R2 = 0.93; winter = 584x – 515, R2 = 0.87). I propose that the relationship is dominated, or set, by mixing with the upwelling UCDW within the Antarctic Zone (AAZ) but may ultimately be susceptible to uptake in the northernly advecting surface waters. In summer, LCo concentrations ranged from ca. 5.15 pmol/kg in surface waters in the Sub-Tropical Zone (STZ) up to ca. 37.7 pmol/kg proximal to the Sub-Antarctic Front (SAF). High concentrations in the surface near the SAF were linked to the Antarctic Intermediate Water (AAIW). In summer, surface DMn concentrations ranged from ca. 0.034 nmol/kg at 60°S in the Weddell Gyre to ca. 0.96 nmol/kg in the STZ. Extremely low concentrations (<0.125 nmol/kg) also characterised surface waters near the Polar Front (PF) at 50°S and at 65°S in the Weddell Gyre, and may co-limit productivity in the region. Thus, supplementation of Mn even via sporadic hydrothermal inputs, such as at 54°S (DMn = 0.67 nmol/kg at 300 m) may be hugely beneficial. LCo and DMn concentration increased significantly in winter in the surface and mixed layer along with decreased ΔCo and ΔMn. LCo and DMn remained strongly coupled in summer and winter, albeit with linear correlation plots unique to the season. Ice cores drilled from pancake ice samples collected within the Antarctic marginal ice zone (MIZ) at 61°S, 30°E revealed that DFe concentrations, and to an extent DMn, were heavily elevated (up to 40 times) in sea ice relative to their open seawater concentrations. Cores were analysed in segments (3 x ± 10 cm). Two trace metal cores were melted using different methods (direct melting and matrix matched melting), but the results were consistent in all segments (no melting method bias) and compared well to ranges reported in external studies. Chlorophyll-a (Chl-a) concentrations were also significantly elevated (>10 times) in sea ice relative to under ice seawater. Trace metal and Chl-a concentrations followed a high (top), low (middle), high (bottom) distribution within the core segments (c-shaped distribution). The phytoplankton community structure was dominated by diatoms and Phaeocystis.
AFRIKAANSE OPSOMMING: Die metaboliese doeltreffendheid van koolstof- (CO2) sekwestrerende mikro-organismes, soos mariene fitoplankton, is onderhewig aan die beskikbaarheid van onder meer spoormetaalvoedingstowwe soos mangaan (Mn), kobalt (Co) en kadmium (Cd). Baie van die Suidelike Oseaan word egter gekenmerk deur 'n gebrek aan spoormetale, wat lei tot lae produktiwiteit ondanks die oormatige beskikbaarheid van die makrovoedingstowwe Nitraat (NO3), Fosfaat (PO4) en Silikaat (SiO4). Gebiede wat hierdie paradoksale toestand vertoon, word geklassifiseer as hoë-voedingsstof lae chlorofil (HNLC). Die skaarsheid hou verband met die plaaslike afstand, wat die kwesbaarheid vir swak insette via tradisionele bronne verhoog (bv. Atmosferiese stof, rivierafvoer en kontinentale marges). Regionale produktiwiteit kan dus ook afhang van alternatiewe toevoerroetes, soos interne herwinning, hidrotermiese toevoerinsette, wintervoorsiening en indirekte insette van die seisoenale see-ysvoorrade. Ons begrip van hierdie prosesse en die impak daarvan op die wêreldwye koolstofsiklus bly egter relatief beperk met groot gapings in die databasis, veral met betrekking tot die wintertoestand en spoormetale in see-ys. Hierdie studie het probeer om hierdie swak verstaanbare fasette te beperk deur waarnemings te rapporteer uit 'n nuwe spoormetaal-reeks wat strek oor drie navorsingstogte (1 somer, 2 winter). Dit sluit in die eerste winter data vir Cd (hoofstuk 2), en Co en Mn (hoofstuk 3) vanuit die HNLC Suidelike Oseaan (GEOTRACES GIPY05_e transect), en die eerste multi-element-spoormetaal (Mn, Fe, Co, Cu, Ni, Cd en Pb) en simpagiese (see-ys) fitoplankton-gemeenskapsdata vir pannekoek-see-ys in die winter (WOCE IO6-transect). Konsentrasies word gerapporteer vir die totale oplosbare (T, ongefilterde) en opgeloste (D, <0,2 μm) fraksies. Analoog verspreidings van TCd en DCd is in die Australiese somer oor die sektor gevind, alhoewel in die oppervlak (en gemengde laag) waar TCd> DCd as gevolg van die uitputting van DCd. Dit lei tot die verdeling van die Cd-breuke (ΔTM = totaal - opgelos), aangesien DCd in die TCd-breuk opgeneem word. Groter ΔCd-waardes hou verband met produktiwiteit, maar verder afhanklik van die fitoplankton-gemeenskapstruktuur (diatoomskakels) en metaboliese verwante spoormetaalkonsentrasies. Winterherbesetting van die Antarktiese sirkumpolêre stroom (ACC) het aan die lig gebring dat TCd- en DCd-konsentrasies binne die gemengde laag toegeneem het, terwyl ΔCd-waardes afgeneem het (in ooreenstemming met laer winterproduktiwiteit). Ten spyte van verhoogde konsentrasies van gemengde lae in die winter en swak opname, het DCd boonop 'n baie voorspelbare lineêre korrelasie tot PO4 gehandhaaf (somer = 592x - 539, R2 = 0,93; winter = 584x - 515, R2 = 0,87). Ek stel voor dat die verhouding oorheers, of ingestel word, deur te meng met die opbouende UCDW binne die Antarktiese Sone (AAZ), maar uiteindelik vatbaar is vir opname in die noordelike voorste oppervlaktewater. In die somer het die LCo-konsentrasies gewissel van ca. 5.15 pmol/kg in oppervlakwater in die Sub- Tropiese Sone (STZ) tot ca. 37.7 pmol/kg na aan die Sub-Antarktiese Front (SAF). Hoë konsentrasies in die oppervlak naby die SAF was gekoppel aan die Antarktiese Intermediêre Water (AAIW). In die somer het die oppervlak-DMn-konsentrasies wissel van ca. 0,034 nmol/kg by 60°S in die Weddell Gyre tot ca. 0.96 nmol/kg in die STZ. Ekstreme lae konsentrasies (<0,125 nmol/kg) het ook oppervlakwater naby die Polar Front (PF) by 50°S en op 65°S in die Weddell Gyre gekenmerk, en kan produktiwiteit in die streek beperk. Dus kan aanvulling van Mn selfs via sporadiese hidrotermiese insette, soos by 54°S (DMn = 0.67 nmol/kg op 300 m), uiters voordelig wees. LCo en DMn konsentrasie het in die winter aansienlik toegeneem in die oppervlak en gemengde laag, tesame met verminderde ΔCo en ΔMn. LCo en DMn het in die somer en winter sterk gekoppel gebly, hoewel dit met lineêre korrelasiepersele uniek aan die seisoen was. Yskerne wat geboor is uit pannekoekmonsters wat binne die antarktiese marginale yssone (MIZ) by 61°S, 30°O versamel is, het aan die lig gebring dat DFe-konsentrasies, en tot 'n mate DMn, sterk (tot 40 keer) in see-ys relatief tot hul oop seewaterkonsentrasies. Kerne is in segmente (3 x ± 10 cm) geanaliseer. Twee spoormetaalkerne is gesmelt met behulp van verskillende metodes (direkte smelt en matriks-ooreenstemmende smelting), maar die resultate was konsekwent in alle segmente (geen vooroordeel van die smeltmetode nie) en het goed vergelyk met die reekse wat in eksterne studies gerapporteer is. Chlorofil-a (Chl-a) konsentrasies is ook beduidend verhoog (> 10 keer) in see-ys in vergelyking met onder ys seewater. Spoormetaal- en Chl-a-konsentrasies volg 'n hoë (bo), lae (middel), hoë (onder) verspreiding binne die kernsegmente (c-vormige verspreiding). Die fitoplankton- gemeenskapstruktuur is oorheers deur diatome en Phaeocystis.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Trace Metals, GEOTRACES, TRACEX, Biogeochemistry -- Antarctic Ocean -- Southern Ocean, Oceanography -- Antarctic Ocean -- Southern Ocean, Cobalt, Sea ice -- Antarctic Ocean, Marine phytoplankton --Seasonal variations -- Antarctic Ocean -- Southern Ocean, Manganese, Cadmium, Seawater -- Iron content -- Antarctic Ocean -- Southern Ocean, Marine phytoplankton -- Effect of metals on, UCTD
Citation