Characterisation of liquid distribution and behaviour within randomly packed columns using electric impedance tomography

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: The optimum design of column internals plays a prominent role in the economic viability of distillation setups, due to such internals’ notable contribution to both operating and capital costs. Progression in both our understanding and characterisation of column internals is therefore paramount. Both hydrodynamic and kinetic characterisation methodologies consider the influence of the vapour-liquid interface, whether directly (effective interfacial area) or indirectly (pressure drop and liquid hold-up). Most of the random packing literature, however, focuses on the evaluation of macro parameters (e.g. pressure drop, holdup, flow rates, packing dimensions and fluid physical properties), with notably less attention to the fluid behaviour at a micro level (e.g. droplet formation, distribution and rivulet formation). This limits the fundamental basis of the available models, introducing numerous regressed empirical constants. In other words, while modern random packing designs are strongly influenced by the optimisation of inter-packing droplet and rivulet formation, the available mathematical models lack predictive capabilities of such micro-behaviour. Against this background, and in pursuit of a better understanding of fluid behaviour and distribution in random packing, an Electrical Impedance Tomography (EIT) measurement system was designed and constructed to visualize and quantify liquid distribution behaviour inside randomly packed columns. The EIT system was preferred to conventional X-Ray tomography, due to a) safety, b) cost-effectiveness, and c) simplicity, while it can be utilised for both conducting and non-conducting liquids. The sensor of the EIT system consisted of a stainless-steel wire matrix, installed at a horizontal plane directly below 3m random packing in a 400mm diameter column. It provided 1369 measuring points, with measuring frequencies of 207 Hz and 21 Hz for conductive and non-conductive liquids, respectively. The data were processed using 2-D and 3-D image processing algorithms to enable quantification of individual liquid elements. The individual elements were evaluated based on their reconstructed volume, surface area and sphericity. The experimental characterisations were used to evaluate the liquid distributions inside two types of industrial random packing, FlexiRing® and Intalox® Ultra, at sizes ranges between 1.5” to 2.5”. The evaluations considered various liquid- and vapour loadings using both water and ethylene glycol to vary the liquid physical properties; water being electrically conductive and ethylene glycol being predominantly non-conductive. The presented results show increased element uniformity in favour of the Intalox® Ultra throughout and illustrated the presence of a force-balance transition in the mechanism of liquid hold-up creation. This indicated the transition from conglomerating inter-packing liquid (IPL) streams, towards droplet-creation. The onset of this transition was found distinctly related to the relative velocity profiles and vapour - liquid shear forces of the respective packings. The contribution of droplets in the inter-packing space to the total vapour-liquid interfacial area was also evaluated. The Intalox® Ultra presented ca 17% and 9.4% increase in total reconstructed surface area for the respective 2” and 1.5” equivalent comparisons with FlexiRing® (for the air-water system). This confirmed the applicability of the EIT characterisation system for both hydrodynamic and kinetic prototyping. Several novel contributions were developed in this work. These are: [1] The development of a characterisation methodology based on EIT for better understanding of inter-packing liquid distributions. [2] Novel experimental inter-packing distribution data for IPL element-volumes and -areas and their relation to: i. packing type, ii. liquid and vapour loadings, and iii. liquid physical properties. [3] Presenting the existence of a packing-specific transitional point, based on liquid and vapour loadings, where the mechanism of liquid hold-up changes. This point marks the cross-over between the conglomeration of inter-packing liquid elements into streams, and their break-up/ redistribution into smaller elements. This alludes to a possible increase in interfacial turbulence (decreasing liquid phase resistance to mass transfer) while adding to the understanding of the pressure drop mechanisms in packed columns. [4] Presenting the total IPL element-surface area as a comparative kinetic characterisation parameter for use in prototyping. This is posed to assist in the design of future packings, in finding the optimum packing area and structure to minimize entrainment and maximize efficiency.
AFRIKAANS SUMMARY: Optimum ontwerp van interne strukture in kolomme is van kritiese belang vir die ekonomiese lewensvatbaarheid van distillasie opstellings, vanweë sodanige strukture se beduidende bydrae tot die kapitaal- en onderhoudskostes. Vooruitgang in die gepaardgaande karakterisering van interne strukture bly derhalwe steeds belangrik. Die bestaande hidrodinamiese- en kinetiese karakteriseringsmetodologieë word beide beïnvloed deur vloeistof-gas interaksies. Hierdie interaksies word direk en indirek aangespreek deur die effektiewe area, drukval en vloeistof inhoud. Die bestaande literatuur rakende ongeordende pakking fokus egter grotendeels op makro- of oorkoepelende eienskappe (totale effektiewe area, drukval en die totale vloeistof inhoud), met aansienlik minder navorsing wat die uitwerking van druppel-formasie en druppel-verspreidings beskou. Die tekort aan genoegsame data rakende hierdie verspreidings beperk dus fundamentele modellering en noodsaak die gebruik van empiriese korrelasies. Teen hierdie agtergrond, en in ʼn poging om die vloeistofgedrag en -verspreiding in ongeordende pakking beter te verstaan, is ʼn Elektriese Impedansie Tomografie (EIT) meetsisteem ontwerp en gebou om die vloeistofverspreidings in die tussen-spasies van ongeordende pakking te visualiseer en te karakteriseer. Die EIT sisteem bied die voordeel van a) veiligheid, b) koste-effektiwiteit en c) eenvoud bo die bestaande X-straal metodes, en is toepasbaar op vloeistowwe wat onderskeidelik elektries-geleidend en nie-geleidend is. Die sensor van die EIT sisteem het bestaan uit ʼn vlekvrye staal draadmatriks, horisontaal geïnstalleer in ʼn 400mm deursnit kolom en direk onder ʼn gepakte hoogte van 3 m. Die matriks het beskik oor 1369 meetpunte, met meet-frekwensies van 207 Hz en 21 Hz vir geleidende en nie-geleidende vloeistowwe onderskeidelik. Die metings is verwerk met gevorderde 2-D en 3-D beeldverwerking algoritmes, waarvolgens die individuele vloeistof elemente gekarakteriseer is volgens hul volume, oppervlak area en sferisiteit. Die eksperimentele karakterisering van vloeistof-druppel verspreidings in ondersoek binne industriële FlexiRing® en Intalox® Ultra pakkings met groottes van 1.5“ tot 2.5“. Die evaluasie het vloeistowwe met veranderende fisiese eienskappe en lug beskou, teen verskillende vloeitempo’s. Die vloeistowwe was onder meer elektries-geleidende water en nie-geleidende etileen-glikol. Die resultate toon ʼn aansienlike verbeterings in druppel uniformiteit ten gunste van die Intalox® Ultra en illustreer ook die teenwoordigheid van ʼn kragte-balans oorgang wat die volumetriese vloeistofinhoud beïnvloed. Hierdie oorgang behels ʼn verandering vanaf druppel-samesmelting tot opbreek en verdeling, en is afhanklik van die snelheidsprofiel en sleurkragte. Die bydrae van die tussen-pakking druppels tot die totale damp-vloeistof oppervlakarea is ook ondersoek, met die Intalox® Ultra wat onderskeidelik 17% en 9.4% meer oppervlakarea toon teenoor die 2” en 1.5” FlexiRing® (vir die lug-water sisteem). Hierdie dien as bevestiging van die bruikbaarheid van die EIT sisteem vir beide hidrodinamiese en kinetiese prototipe-ontwikkeling. Die nuwe bydraes, soos ontwikkel in hierdie werk, word gelys as: [1] Die ontwikkeling van ʼn EIT karakteriseringsmetode vir tussen-pakking vloeistof verspreidings. [2] Tussen-pakking vloeistof-element verspreidings i.t.v. oppervlak area en volume en hul verband met: i. tipe pakking, ii. vloeistof- en gasvloeitempo’s, en iii. vloeistof fisiese eienskappe. [3] Bewyse rakende die bestaan van ʼn pakking-spesifieke oorgangspunt, waar die meganisme van volumetriese vloeistofinhoud verander vanaf druppel-samesmelting tot opbreek en verdeling. Hierdie fenomeen dui op ʼn moontlike verandering in tussenvlak turbulensie terwyl dit ook bydra tot ʼn beter verstaan van die meganisme van drukval in gepaktye kolomme. [4] Die voorstelling van die totale tussen-pakking area van vloeistof-elemente as ʼn kinetiese parameter vir gebruik in prototipe ontwikkeling. Die metode word voorgestel om te help met die ontwerp van toekomstige pakkings, deur die optimum pakkingsarea en -struktuur te identifiseer om meesleuring te minimeer en effektiwiteit te maksimeer.
Description
Thesis (PhD)--Stellenbosch University, 2022.
Keywords
Electrical impedance tomography, Packed towers, Chemical kinetics, Fluid dynamics
Citation