Techno-economic analysis of solid oxide electrolysis using concentrated solar energy for green hydrogen production in South Africa.

Date
2024-02
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: RRising global awareness about climate change, depletion of fossil reserves, and economic pressure are propelling many countries to decarbonise their energy sectors. Green hydrogen, which is produced by the electrolysis of water, may play a vital role in decarbonising the ‘hard to abate’ sectors. Solid oxide electrolysis cells (SOECs), currently the most electrically efficient electrolysis technology, operate with high-temperature steam between 700-1000°C, which leads to a reduction in the electrical requirement for electrolysis but introduces a thermal energy demand. Concentrated solar thermal (CST) energy with thermal energy storage (TES) is a potential candidate for providing dispatchable renewable high-temperature heat for an SOEC system. This thesis presents a techno-economic analysis and optimisation of a 100 MW hypothetical SOEC plant with heat integration from CST+TES in the Northern Cape of South Africa for green hydrogen export. The primary objective was to perform a direct economic comparison between a hybrid system that sources thermal energy integration from CST+TES, and a reference system that uses thermal energy from electric heating. Both the hybrid and reference systems rely on electricity generated by dedicated photovoltaic (PV) and wind turbine plants. The capacities of the CST, TES, PV and wind turbine plant models for both systems were optimised to achieve the minimum levelised cost of hydrogen (LCOH) produced by the SOEC. Results from the SOEC plant model showed that up to 16.6 % of the electricity demand of the SOEC plant can be replaced by integrating CST+TES to augment the thermal demand of the electric boiler for steam production. For the hybrid system, a parabolic trough CST plant with a twotank direct oil storage was modelled which delivered 92 % of the annual thermal demands of the hybrid system. The hybrid system with CST exhibited an LCOH of 5.88 $/kg compared to the reference system’s 6.13 $/kg. A sensitivity analysis showed that the hybrid system maintains its economic competitiveness over the reference system over a wide range of CST, TES, PV and wind turbine capacities. In conclusion, this thesis demonstrated the economic advantages of integrating CST+TES into a SOEC plant which is powered by PV and wind turbines, leading to a 4.1 % reduction in LCOH. However, this integration introduces complexity and associated operational and financial risks, which will influence investment decisions.
AFRIKAANSE OPSOMMING: Toenemende wêreldwye bewustheid oor klimaatsverandering, uitputting van fossiel reserwes, en ekonomiese druk dryf baie lande om hul energie sektore te dekarboniseer. Groen waterstof, wat deur elektrolise van water geproduseer word, kan 'n noodsaaklike rol speel in die dekarbonering van die 'hard to abate' sektore. Soliede oksied elektrolise selle (SOEC) is tans die mees elektries effektiewe elektrolise tegnologie wat met hoë temperatuur stoom van 700- 1000°C werk, wat lei tot 'n verlaging in die elektriese vereiste vir elektrolise, maar termiese energie behoefte inbring. Gekonsentreerde sontermiese (CST) energie met termiese energie berging (TES) is 'n potensiële kandidaat om hernubare hoë temperatuur hitte te voorsien vir 'n SOEC stelsel wat herroepbaar is. Hierdie tesis bied 'n tegno-ekonomiese analise en optimisering van 'n hipotetiese SOEC aanleg van 100 MW met termiese integrasie van CST+TES in die Noord-Kaap van Suid-Afrika vir die uitvoer van groen waterstof. Die primêre doel was om 'n direkte ekonomiese vergelyking te maak tussen 'n hibriede stelsel wat termiese energie integrasie van CST+TES ontvang en 'n verwysing stelsel wat termiese energie van elektriese verwarming ontvang. Beide die hibriede en die verwysing stelsels steun op elektrisiteit wat deur toegewyde fotovoltaïese en wind turbine aanlegte opgewek word. Die kapasiteite van die CST, TES, PV en wind turbine aanleg modelle vir beide stelsels is geoptimiseerd vir 'n minimale gelyk koste van waterstof (LCOH) wat deur die SOEC geproduseer word. Resultate van die SOEC aanleg model het getoon dat tot en met 16.6 % van die elektriese aanvraag van die SOEC aanleg vervang kan word deur CST+TES te integreer om die termiese benodigheid van die elektriese boiler vir stoom produksie in die SOEC aanleg aan te vul. Vir die hibriede stelsel is 'n paraboliese trog CST aanleg met 'n twee tenk direkte olieberging stelsel gemodelleer wat 92 % van die jaarlikse termiese vraag van die hibriede stelsel gelewer het. Die hibriede stelsel met CST het 'n LCOH van 5.88 $/kg getoon in vergelyking met die verwysing stelsel se 6.13 $/kg. 'n Sensitiwiteitsanalise het getoon dat die hibriede stelsel sy ekonomiese voordeel oor 'n wye reeks van CST-, TES-, PV- en wind turbine kapasiteite handhaaf. Ten slotte, hierdie tesis het die ekonomiese voordele van die integrasie van CST+TES in 'n SOEC aanleg wat deur PV en wind turbines aangedryf word, aangetoon, wat lei tot 'n 4.1 % afname in die LCOH. Hierdie integrasie bring egter kompleksiteit en die daarmee saamgaande operasionele en finansiële risiko's in wat beleggingsbesluite sal beïnvloed.
Description
Thesis (MEng)--Stellenbosch University, 2024.
Keywords
Citation