Interaction between plastic particles and biofilms

Date
2023-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The problem with plastic waste is immense and has received much attention in the last 15 years. Plastics break down into smaller plastic particles over time, from degradation that occurs from various sources. The natural environment poses many forces, including physical, chemical, and biological, which quicken the rate of degradation of plastic. These plastic particles are able to move through the environment due to natural forces which have managed to spread them everywhere. Accumulation of plastic particles is thus thought to be a problem which has the potential to effect living organisms on a large scale. There is reason to believe that association with and ingestion of plastic particles may cause health risks due to the size of the particles and harmful chemicals which may interact with them in the environment. Bacteria are amongst the first organisms which will interact when it is introduced into the environment. The formation of biofilms on the plastic may follow and in aqueous environments, may take only hours. These biofilms are robust and will proliferate under harsh conditions that may accelerate the degradation of the plastic polymer backbone and result in the production of plastic particles. Some microorganisms have the ability to produce plastic degrading enzymes which will enhance this process. They can also change their microenvironment enough to make plastic degradation less efficient and greatly alter the fate of plastic particles. The surfaces of weathered plastic particles are conducive to biofilm growth and thus strong relationships exist with biofilms that form on plastic particles. Information is, however, sparce on the inverse relationship which plastic particles may have with biofilms. While plastic particles are common in the environment, biofilms are ubiquitous. There are thus many environments containing biofilms which may be greatly changed by the introduction of plastic particles. In the experimental section of this project a method was developed to study interactions between biofilms and plastic particles in a simulated continuous flow environment. The fluorescently labelled bacteria used in the study, in this case Pseudomonas fluorescens CT07::gfp were selected due to their affinity for growing as a biofilm. This is important as it facilitates a more realistic environment than a conventional planktonic culture would. The method was successful in detecting accumulation of plastic particles under specific conditions and measuring how the relationship of particle accumulation was affected by altering specific parameters of the system, like the concentration of plastic particles and nutrients in the growth medium. It was determined that biofilms cultured in lower nutrient medium concentration of tryptic soy broth (0.3 g/L) resulted in the adherence of significantly more plastic particles in the flowcells than the higher nutrient medium concentration (3.0 g/L). Furthermore, both biofilms resulted in the adherence of significantly more plastic particles in the flowcells than the sterile controls which were performed, and which had no significant difference between each other. The process of bead adhesion was observed and documented to be due to multiple factors, including extracellular polymeric substances (EPS), biofilm cells, and shear forces at the flowcell surface. It was determined that the presence of a biofilm resulted in significantly more plastic particles accumulating in the biofilm than the absence thereof, indicating that there is significant interaction between the biofilm and plastic particles. The binding ratio of each of the biofilms was calculated by determining the total theoretical number of adhered plastic particles in each flowcell and dividing that by the total number of plastic particles that had passed through each flowcell. A constant binding ratio was obtained for each biofilm cultured on the different nutrient medium concentrations which also remained constant when the concentration of plastic particles was changed Furthermore, the potential of biofilms as plastic particle traps was explored due to the observed relationships, but a low efficiency of bead binding was determined.
AFRIKAANSE OPSOMMING: Die probleem met plastiekafval is geweldig en het die afgelope 15 jaar baie aandag geniet. Plastiek breek mettertyd af in kleiner plastiekdeeltjies, van agteruitgang wat van verskeie bronne plaasvind. Die natuurlike omgewing stel baie kragte in, insluitend fisiese, chemiese en biologies, wat die tempo van afbraak van plastiek versnel. Hierdie plastiekdeeltjies is in staat om deur die omgewing te beweeg as gevolg van natuurlike kragte wat dit reggekry het om hulle oral te versprei. Ophoping van plastiekdeeltjies word dus beskou as 'n probleem wat die potensiaal het om lewende organismes op groot skaal te beïnvloed. Daar is rede om te glo dat assosiasie met en inname van plastiekdeeltjies gesondheidsrisiko's kan veroorsaak as gevolg van die grootte van die deeltjies en skadelike chemikalieë wat met hulle in die omgewing kan inwerk. Bakterieë is van die eerste organismes wat in wisselwerking sal tree wanneer dit in die omgewing ingebring word. Die vorming van biofilms op die plastiek kan volg en in waterige omgewings kan dit slegs ure neem. Hierdie biofilms is robuust en sal onder strawwe toestande vermeerder wat die agteruitgang van die plastiekpolimeerruggraat kan versnel en kan lei tot die produksie van plastiekdeeltjies. Sommige mikroörganismes het die vermoë om plastiese afbrekende ensieme te produseer wat hierdie proses sal verbeter. Hulle kan ook hul mikro-omgewing genoeg verander om plastiekafbraak minder doeltreffend te maak en die lot van plastiekdeeltjies grootliks te verander. Die oppervlaktes van verweerde plastiekdeeltjies is bevorderlik vir biofilmgroei en daar bestaan dus sterk verwantskappe met biofilms wat op plastiekdeeltjies vorm. Daar is egter min inligting oor die omgekeerde verwantskap wat plastiekdeeltjies met biofilms kan hê. Terwyl plastiekdeeltjies algemeen in die omgewing voorkom, is biofilms alomteenwoordig. Daar is dus baie omgewings wat biofilms bevat wat grootliks verander kan word deur die bekendstelling van plastiekdeeltjies. In die eksperimentele afdeling van hierdie projek is 'n metode ontwikkel om interaksies tussen biofilms en plastiekdeeltjies in 'n gesimuleerde deurlopende vloei-omgewing te bestudeer. Die fluorescent gemerkte bakterieë wat in die studie gebruik is, in hierdie geval Pseudomonas fluorescens CT07::gfp, is gekies as gevolg van hul affiniteit vir groei as 'n biofilm. Dit is belangrik aangesien dit 'n meer realistiese omgewing fasiliteer as wat 'n konvensionele planktoniese kultuur sou. Die metode was suksesvol om akkumulasie van plastiekdeeltjies onder spesifieke toestande op te spoor en te meet hoe die verhouding van partikelakkumulasie beïnvloed is deur spesifieke parameters van die sisteem te verander, soos die konsentrasie van plastiekdeeltjies en voedingstowwe in die groeimedium. Daar is vasgestel dat biofilms wat in 'n laer voedingsmediumkonsentrasie van triptiese sojabouillon (0.3 g/L) gekweek is, gelei het tot die aanhegting van aansienlik meer plastiekdeeltjies in die vloeiselle as die hoër voedingsmediumkonsentrasie (3.0 g/L). Verder het beide biofilms gelei tot die aanhegting van aansienlik meer plastiekdeeltjies in die vloeiselle as die steriele kontroles wat uitgevoer is, en wat geen betekenisvolle verskil tussen mekaar gehad het nie. Die proses van krale adhesie is waargeneem en gedokumenteer as gevolg van veelvuldige faktore, insluitend ekstrasellulêre polimeriese stowwe (EPS), biofilmselle en skuifkragte by die vloeiseloppervlak. Daar is vasgestel dat die teenwoordigheid van 'n biofilm daartoe gelei het dat aansienlik meer plastiekdeeltjies in die biofilm ophoop as die afwesigheid daarvan, wat aandui dat daar beduidende interaksie tussen die biofilm en plastiekdeeltjies is. Die bindingsverhouding van elk van die biofilms is bereken deur die totale teoretiese aantal aangehegte plastiekdeeltjies in elke vloeisel te bepaal en dit te deel deur die totale aantal plastiekdeeltjies wat deur elke vloeisel gegaan het. 'n Konstante bindingsverhouding is verkry vir elke biofilm wat gekweek is op die verskillende voedingsmediumkonsentrasies wat ook konstant gebly het wanneer die konsentrasie van plastiekdeeltjies verander is. Verder is die potensiaal van biofilms as plastiekdeeltjievalletjies ondersoek as gevolg van die waargenome verwantskappe, maar 'n lae doeltreffendheid van kralebinding is bepaal.
Description
Thesis (MSc)--Stellenbosch University, 2023.
Keywords
Citation