Development and evaluation of an animal-borne sensor prototype with integrated kinetic energy harvesting for rhinoceros conservation

dc.contributor.advisorNiesler, Thomasen_ZA
dc.contributor.advisorWolhuter, Riaanen_ZA
dc.contributor.authorRobinson, Simonen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.en_ZA
dc.date.accessioned2023-03-02T08:27:45Zen_ZA
dc.date.accessioned2023-05-18T07:04:31Zen_ZA
dc.date.available2023-03-02T08:27:45Zen_ZA
dc.date.available2023-05-18T07:04:31Zen_ZA
dc.date.issued2023-03en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2023.en_ZA
dc.description.abstractENGLISH ABSTRACT: This project aimed to evaluate the potential of a previously developed kinetic energy harvester as a means to improve the battery life and prolong the deployment of an animal-borne sensor. It builds on animal-borne sensor hardware which was developed previously and forms a part of the ongoing RhinoNET research project. This project has already lead to the development of a GPS enabled animal-borne sensor with accelerometer-based on-board behaviour classification, and which can communicate over a LORA radio network. This project extends this work by extending the existing hardware and integrating a kinetic energy harvester and associated energy management circuitry into the sensor. Energy management software for this updated animal-borne sensor is included, in order to allow the minimisation of its energy usage. This updated sensor and software are tested by practical measurement of the energy output of the kinetic energy harvester and the energy consumption of the animal-borne sensor. Because physical measurements on rhinoceros was not possible, this evaluation was achieved first t hrough s imulation. A rhinoceros behaviour model was designed based on previously gathered behaviour data and used to simulate the operation of the entire animal-borne sensor when subjected to rhinoceros activity. This included the modelling of the energy management software of the sensor, the energy consumption of the sensor, and the energy generation of the kinetic energy harvester. Subsequently, the energy generation of the kinetic energy harvester was measured on a human volunteer. Through this combination of practical measurement and simulation, it was estimated that, when attached to a rhinoceros, the kinetic energy harvester would generate on average 14J of energy per day, which is enough to power the sensor and transmit a GPS location update four times. Alternatively, it can increase the battery life of the sensor by between 3 and 60 days, depending on the frequency of GPS updates. The simulation also showed that when compared to a naïve approach, the energy management software could reduce the energy usage of the animal-borne sensor from 1548.09J to 507.2J per day. It was observed that the energy output waveform of the energy harvester is not ideal for charging a lithium-polymer battery, as used in the prototype. Therefore, future work should include consideration of other energy storage technologies. If these could be found, the integration of the energy harvester would in principle allow indefinite operation of the animal-borne sensor.en_ZA
dc.description.abstractAFRIKAANS OPSOMMING: Hierdie projek het ten doel om die potensiaal van ’n voorheen ontwikkelde kinetiese energie generator te evalueer as ’n manier om die batterylewe van ’n diergedraagdex sensor te verbeter en die ontplooiing daarom te ondersoek. Dit bou voort op dier-gedraagde sensor hardeware wat voorheen ontwikkel is en vorm deel van die voortgesette RhinoNET navorsingsprojek. Hierdie projek het reeds gelei tot die ontwikkeling van ’n GPS-geaktiveerde dier-gedraagde sensor met versnellingsmeter-gebaseerde gedragsklassifikasie aan boord, en wat oor ’n LORA-radionetwerk kan kommunikeer. Hierdie projek bou voort op hierdie werk deur die bestaande hardeware uit te brei en ’n kinetiese energie generator met gepaardgaande energiebestuur in die sensor te integreer. Dit ontwikkel ook energiebestuursagteware vir hierdie opgedateerde dier-gedraagde sensor, om die vermindering van sy energieverbruik moontlik te maak. Hierdie opgedateerde sensor en sagteware word getoets deur praktiese meting van die energie-uitset van die kinetiese energie generator en die energieverbruik van die diere-gedraagde sensor. Omdat fisiese metings o p r enosters n ie moontlik was nie, is hierdie evaluasie eers deur simulasie uitgevoer. ’n Renostergedragsmodel is ontwerp gebaseer op voorheen versamelde gedragsdata en gebruik om die werking van die hele dier-gedraagde sensor te simuleer wanneer dit aan renosteraktiwiteit onderwerp word. Dit het die modellering van die energiebestuursagteware van die sensor, die energieverbruik van die sensor en die energieopwekking van die kinetiese energie generator ingesluit. Vervolgens is die energie-opwekking van die kinetiese energie generator op ’n menslike vrywilliger gemeet. Deur hierdie kombinasie van praktiese meting en simulasie, is beraam dat wanneer dit aan ’n renoster geheg is, die kinetiese energie generator gemiddeld 14J energie per dag sou opwek, wat genoeg is om die sensor aan te dryf en ’n GPS-liggingsopdatering vier keer uit te stuur. Alternatiewelik kan dit die batterylewe van die sensor met tussen 3 en 60 dae verleng, afhangende van die frekwensie van GPS-opdaterings. Die simulasie het ook getoon dat in vergelyking met ’n naïewe benadering, die energiebestuursagteware die energieverbruik van die dier-gedraagde sensor van 1548.09J tot 507.2J per dag kan verminder. Daar is waargeneem dat die energie-uitset golfvorm van die energie stroper nie ideaal is vir die laai van ’n litium-polimeer battery soos gebruik in die prototipe nie. Daarom moet toekomstige werk oorweging van ander energiebergingstegnologieë insluit. As dit gevind kon word, sou die integrasie van die energie generator in beginsel onbepaalde werking van die dier-gedraagde sensor moontlik maak. af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxviii, 84 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/127105en_ZA
dc.language.isoen_ZAen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshEndangered species -- Detectionen_ZA
dc.subject.lcshPrototypes, Engineeringen_ZA
dc.subject.lcshAccelerometersen_ZA
dc.subject.lcshSensor networks en_ZA
dc.subject.lcshTracking (Engineering) -- Energy consumptionen_ZA
dc.titleDevelopment and evaluation of an animal-borne sensor prototype with integrated kinetic energy harvesting for rhinoceros conservationen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
robinson_development_2023.pdf
Size:
34.62 MB
Format:
Adobe Portable Document Format
Description: