Investigating the solid-state dynamics of 1D coordination polymers

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The aims of this study were twofold: (i) to produce a series of 1D materials exhibiting novel solid-state packing, and (ii), to study these materials with a view to gaining insight into their structure-property relationships. Studies of the ability of the materials to undergo several single-crystal to single-crystal transformations were prioritised. Both dynamic behaviours and transformations were observed in the series produced. The first study describes the mechanochemical separation of two solvates that crystallise concomitantly under solvothermal conditions. Variation of the solvent water composition, and the introduction of aging periods before and after grinding provided various methods of preparing either solvate. A third solvate was prepared in a separate solvent system from the first two. Finally, solvent exchange allowed relatively facile interconversion between all three forms The second study focused on the transient porosity of two 1D coordination polymers. These materials show extreme contraction upon guest release equating to a reduction of up to 39% of the unit-cell volume. Importantly, these transformations progress in a single-crystal to single-crystal fashion and represent some of the largest reported lithotropic contractions. Consequently, the contortion of the conceptually linear ligand in one material far exceeds previous reports. These materials both resorb liquid guests, and one material sorbs vapours. Furthermore, greater ease of structural reopening occurs with each consecutive vapour sorption cycle. In Chapter 5, the low-temperature phase-change behaviour and structural dynamics in terms of thermal expansion of a series of materials, where only the metal centre is varied, are studied. This yielded a series of materials with analogous packing motifs. In nearly all cases, colossal linear and volumetric thermal expansion were recorded in the temperature range 100–270 K. In some cases, supercolossal linear thermal expansion was exhibited, in addition to extreme anisotropy. The results are comparable to the largest linear and most anisotropic thermal expansion reported, but far exceed that reported for 1D coordination polymers. The largest anisotropic thermal expansion occurred in solid solutions, indicating that this behaviour is tuneable. Studies of structure-property relationships and solid-state dynamics require firstly single-crystal to single crystal transformations and secondly bulk phase purity. In 1D coordination polymers both these criteria are often problematic. This work addresses both these concerns, providing methods to overcome or circumvent these hindrances. Furthermore, several of the outcomes in this work exceed or are comparable to the limits of similar solid-state dynamics reported in the literature
AFRIKAANSE OPSOMMING: Die doelstellings van hierdie studie was tweeledig: (i) om 'n reeks 1D-materiale te vervaardig wat nuwe vastetoestand verpakking toon, en (ii) om hierdie materiale te bestudeer met die oog op insig in hul struktuur-eiendomsverhoudinge. Studies oor die vermoë van die materiale om verskillende enkelkristal- tot enkelkristal-transformasies te ondergaan was geprioritiseer. Beide dinamiese gedrag en transformasies is waargeneem in die reeks wat geproduseer is. Die eerste studie beskryf die meganochemiese skeiding van twee solvate wat gelyktydig kristaliseer onder solvotermiese toestande. 'n Variasie van die oplosmiddelwatersamestelling en die instelling van verouderingsperiodes voor en na die maalwerk het verskillende metodes vir die bereiding van elk van die vorme verskaf. 'n Derde solvaat is in 'n aparte oplosmiddelstelsel van die eerste twee berei. Laastens het die uitruil van oplosmiddels wisselwerking tussen al drie vorms moontlik gemaak. Die tweede studie fokus op die kortstondige porositeit van twee 1D-koördinasiepolimere toegelig. Hierdie materiale toon 'n uiterse sametrekking met gasvrystelling, wat gelykstaande is aan 'n vermindering van tot 39% van die eenheidselvolume. Belangrikste is, is dat hierdie transformasies op 'n enkelkristal- tot enkelkristal-manier verloop en verteenwoordig van die grootste gerapporteerde litotropiese sametrekkings. Gevolglik is die vervorming van die konseptueel lineêre ligand in een materiaal baie groter as vorige verslae. Albei materiale resorbeer vloeibare gaste, en een materiaal absorbeer dampe. Verder vind 'n groter gemak van strukturele heropening plaas by elke opeenvolgende dampsorpsiesiklus. In Hoofstuk 5 word die lae temperatuur faseveranderingsgedrag en strukturele dinamika in terme van termiese uitsetting van 'n reeks materiale waar slegs die metaalsentrum gevarieerd is bestudeer. Dus word 'n reeks materiale met analoog verpakkingsmotiewe vervaardig. In bykans alle gevalle word kolossale lineêre en volumetriese termiese uitsetting aangeteken in die temperatuurreeks 100–270 K. In sommige gevalle word superkolossale lineêre termiese uitbsetting getoon, benewens ekstreme anisotropie. Die resultate is vergelykbaar met die grootste en mees anisotropiese termiese uitsetting wat gerapporteer is, maar is baie groter as wat vir 1D-koördinasiepolimere gerapporteer is. Die grootste anisotropiese termiese uitsetting vind in soliede oplossings plaas; wat aandui dat hierdie gedrag verstelbaar is. Die studie van verhoudinge tussen struktuur-eiendom en vastetoestand-dinamika vereis eerstens enkelkristal tot enkelkristal transformasies en tweedens bulkfase suiwerheid. Met 1D-koördinasiepolimere is beide hierdie kriteria dikwels problematies. Hierdie werk spreek beide hierdie probleme aan, metodes word aangebied om hierdie hindernisse te oorkom of omseil. Verder oorskry of vergelyk die uitkomste in hierdie werk soortgelyke vastetoestanddinamika wat in die literatuur gemeld is.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Polymers, UCTD, Mechanical chemistry, Crystalline polymers, Solid state chemistry, Dimensional coordination- -- Polymers
Citation