Estimating the continuous risk of accidents occurring in the mining industry in South Africa

Van den Honert, Andrew Francis ; Vlok, Pieter-Jan (2015)

CITATION: Van Den Honert, A. F. & Vlok, P. J. 2015. Estimating the continuous risk of accidents occurring in the mining industry in South Africa. South African Journal of Industrial Engineering, 26(3):71-85, doi:10.7166/26-3-1121.

The original publication is available at http://sajie.journals.ac.za

Article

This study contributes to the on-going efforts to improve occupational safety in the mining industry by creating a model capable of predicting the continuous risk of occupational accidents occurring. Contributing factors were identified and their sensitivity quantified. The approach included using an Artificial Neural Network (ANN) to identify patterns between the input attributes and to predict the continuous risk of accidents occurring. The predictive Artificial Neural Network (ANN) model used in this research was created, trained, and validated in the form of a case study with data from a platinum mine near Rustenburg in South Africa. This resulted in meaningful correlation between the predicted continuous risk and actual accidents.

Hierdie studie probeer ’n bydrae lewer om beroepsveiligheid in die mynbedryf te verbeter deur ’n model te skep wat in staat is daartoe om die voortdurende risiko’s van moontlike werksongelukke te voorspel. Bydraende faktore is geïdentifiseer en hulle sensitiwiteit is gekwantifiseer. Die benadering sluit in die gebruik van ’n Kunsmatige Neurale Netwerk (ANN) wat patrone identifiseer tussen die bydraende kenmerke en om die aanhoudende risiko van ongelukke te voorspel. Hierdie model was geskep, opgelei en gevalideer tydens ’n gevallestudie waar die data verkry is van ’n platinum-myn naby Rustenburg in Suid-Afrika. Die gevolgtrekking was dat ’n betekenisvolle korrelasie tussen die voorspelbare voortdurende risiko’s en werklike ongelukke bestaan.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/99556
This item appears in the following collections: