Resource-efficient process chains to manufacture patient-specific prosthetic fingers

dc.contributor.authorHagedorn-Hansen, Devonen_ZA
dc.contributor.authorOosthuizen, G. A.en_ZA
dc.contributor.authorGerhold, Tristanen_ZA
dc.identifier.citationHagedorn-Hansen, D., Oosthuizen, G. A. & Gerhold, T. 2016. Resource-efficient process chains to manufacture patient-specific prosthetic fingers. South African Journal of Industrial Engineering, 27(1):75-87, doi:
dc.identifier.issn2224-7890 (online)
dc.identifier.issn1012-277X (print)
dc.descriptionCITATION: Hagedorn-Hansen, D., Oosthuizen, G. A. & Gerhold, T. 2016. Resource-efficient process chains to manufacture patient-specific prosthetic fingers. South African Journal of Industrial Engineering, 27(1):75-87, doi:
dc.descriptionThe original publication is available at
dc.description.abstractThe high cost of quality prostheses, together with the lack of trained prosthetists, makes it challenging to obtain prosthetic devices in developing communities. Modern 3D digitising techniques and additive manufacturing (AM) technologies are gaining popularity in the bio-medical industry and, in the case of prosthesis production, reduce the need for a trained prosthetist. The objective of this research was to develop a new resource-efficient process chain for the manufacturing of prosthetic fingers using additive manufacturing technologies, and to compare it with the traditional (Sculptor) process chain. Fused deposition modelling (FDM), open-source FDM, 3-dimensional printing (3DP), and stereolithography (SLA) were evaluated in terms of their costs, time, material usage, and aesthetic quality. The surface qualities produced with the different additive manufacturing technologies were also compared. The results showed that 3DP was the preferred technology and was the best candidate for the production of prosthesis in terms of cost, quality, and time for developing communities. SLA produced the highest aesthetic quality prosthesis, but was the most expensive. It was concluded that using the additive manufacturing technology process chain to produce prosthetic fingers is faster and more cost effective than the traditional method.en_ZA
dc.description.abstractDie hoë kostes van gehalte prosteses, en die toegang tot opgeleide prostese vervaardigers, maak dit ’n uitdaging om prostetiese toestelle in ontwikkelende gemeenskappe te bekom. Moderne 3D digitaliserings tegnieke en toevoeging vervaardiging (AM) tegnologie is besig om in die bio-mediese bedryf gewild te raak en, in die geval van prostese produksie, kan dit die behoefte aan ’n opgeleide prostese vervaardigers beperk. Die doel van hierdie navorsing was om ’n nuwe hulpbron doeltreffende proses ketting vir die vervaardiging van prostetiese vingers met behulp toevoeging vervaardiging tegnologie te ontwikkel en om dit te vergelyk met die tradisionele proses ketting. Saamgesmelte afsetting modellering (FDM), 3-dimensionele druk (3DP) en stereolithography (SLA) is geëvalueer in terme van hul kostes, tyd, materiaal verbruik en estetiese gehalte. Die geproduseerde oppervlak eienskappe van die verskillende toevoeging vervaardiging tegnologieë is ook vergelyk. Die resultate het getoon dat 3DP die voorkeur-tegnologie en die beste kandidaat vir die produksie van prostese in terme van koste, kwaliteit en tyd vir die ontwikkeling van gemeenskappe was. SLA het die hoogste estetiese gehalte prostese vervaardig, maar was die duurste. Die gebruik van AM tegnologie binne die waardeketting om prostetiese vingers te produseer, is vinniger en meer koste-effektiewe as die tradisionele metode.af_ZA
dc.format.extent13 pages
dc.subjectProsthetic fingers -- Design -- Specificationsen_ZA
dc.subjectArtificial fingersen_ZA
dc.subjectFingers prosthesesen_ZA
dc.subjectArificial limbs -- Design -- Specificationsen_ZA
dc.titleResource-efficient process chains to manufacture patient-specific prosthetic fingersen_ZA
dc.description.versionPublisher's version
dc.rights.holderAuthors retain copyright

Files in this item


This item appears in the following Collection(s)