dc.contributor.advisor | Van Wyk, L. | en_ZA |
dc.contributor.author | Sehoana, Mahlare Gerald | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Department Mathematical Sciences (Mathematics) | en_ZA |
dc.date.accessioned | 2015-12-14T07:44:19Z | |
dc.date.available | 2015-12-14T07:44:19Z | |
dc.date.issued | 2015-12 | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/98118 | |
dc.description | Thesis (MSc)--Stellenbosch University, 2015 | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT : In this thesis we first discuss the proof by Mirzakhani [9] of Schur's Theorem which gives the maximum number of linearly independent matrices in a commutative algebra of n×n matrices over a field F. An example illustrating the application of Schur's Theorem is given. Secondly, we discuss the Cayley-Hamilton Theorem which asserts that any n×n matrix A satisfies its characteristic polynomial. A deduction of a Cayley-Hamilton trace identity for a 2 × 2 matrix A over a commutative ring from the Cayley-Hamilton Theorem is shown.
We then discuss the Cayley-Hamilton trace identity for any matrix A ∈ M2(R) when (i) R is commutative,
(ii) R is not necessarily commutative,
(iii) R is not necessarily commutative and sp(A) = 0,
(iv) R is not necessarily commutative and satisfies the identity [[x, y], [x, z]] = 0.
Lastly, we discuss the matrix algebras U∗n(R), in particular the matrix algebras U∗3 (R) and U∗4 (R), in relation to polynomial identities [[. . . [[x1, x2], x3], . . .], xn] = 0, [x, y][w, z] = 0 and [[x, y], [w, z]] = 0. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING : In hierdie tesis beskryf ons eerstens die bewys deur Mirzakhani [9] van Schur se Stelling wat die maksimum aantal lineêr onafhanklike matrikse in 'n kommutatiewe algebra van n × n matrikse oor 'n liggaam F gee. 'n Voorbeeld word gegee wat die toepassing van Schur se Stelling illustreer.
Tweedens bespreek ons die Cayley-Hamilton Stelling wat beweer dat elke n×n matriks A sy karakteristieke polinoom bevredig. 'n Afleiding van 'n Cayley-Hamilton spoor identiteit vir 'n 2 × 2 matriks A oor 'n kommutatiewe ring vanuit die Cayley-Hamilton Stelling
word gegee. Ons bespreek dan die Cayley-Hamilton spoor identiteit vir enige matriks
A ∈ M2(R) wanneer
(i) R kommutatief is,
(ii) R nie noodwendig kommutatief is nie,
(iii) R nie noodwendig kommutatief is nie en sp(A) = 0,
(iv) R nie noodwendig kommutatief is nie en die identiteit [[x, y], [x, z]] = 0 bevredig.
Laastens bespreek ons die matriksalgebras U∗n(R), in besonder die matriksalgebras U∗3 (R)en U∗
4 (R), met betrekking tot die polinoom identiteite [[. . . [[x1, x2], x3], . . .], xn] = 0,
[x, y][w, z] = 0 en [[x, y], [w, z]] = 0. | af_ZA |
dc.format.extent | vi, 88 pages | en_ZA |
dc.language | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Matrix algebras | en_ZA |
dc.subject | Matrices | en_ZA |
dc.subject | Lie algebras | en_ZA |
dc.subject | Schur's theorem | en_ZA |
dc.subject | Cayley–Hamilton theorem | en_ZA |
dc.subject | Commutativity (mathematics) | en_ZA |
dc.title | On commutativity and lie nilpoten y in matrix algebras | en_ZA |
dc.type | Thesis | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |