Design of a series articulated bipedal robot capable of agile and transient maneuvers
Date
2023-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: For legged robots to effectively emulate the dynamic maneuverability, mobility and agility presented by animals in nature, highly dynamic and robust legged locomotive systems are required. In achieving transient legged mobility, legged robots are capable of employing static and dynamically stable motions, including walking, running and jumping, to navigate various topographic terrains and overcome obstacles in unknown environments. However, due to the numerous complexities and non-linearities involved in legged locomotion; researchers in the past have struggled to produce robotic systems that embody the same level of dexterity and maneuverability seen by their biological inspiration. The aim of this thesis was to design and develop a series articulated bipedal robot
capable of performing agile and transient maneuvers. In accomplishing this objective, the designed robots would serve as a platform for future research candidates at Stellenbosch University to explore legged locomotive compliance on various terrains. However, the main focus of this research involved the investigation and implementation of key design principles, identified through literature to have contributed to the advancements seen in existing legged robots. To aid the design process of the bipdeal robot, named Q-Bert, an analytical analysis was employed to investigate the jumping performance of a two link articulated leg model for various link lengths and actuators. This resulted in the selection of an appropriate link length, along with a Quasi-Direct Drive electric actuation transmission. Thereafter, an iterative mechanical design process was conducted to produce an initial monopedal prototype; while ensuring adequate structural integrity and minimized system mass and inertia. Furthermore, the planar motion of both, the monopod and biped platforms were constrained within the sagittal plane and supported by a developed vertical planarizing cart system. Q-Bert’s dynamic motions were embodied through the implementation of a virtual model controller inspired by Raibert’s control framework. The performance of these dynamic motions were evaluated and verified through a performance metric known as vertical specific agility. This showed the agility of Q-Bert to surpass some existing dynamic robots; however, was unable to compete with the most agile legged systems. The transient capabilities of Q-Bert were compared to long-time-horizon trajectories generated through a trajectory optimisation simulation and verified Q-Bert’s suitability for transient maneuvers. Q-Bert’s verified suitability was achieved through periodic hopping maneuvers that showed the steady-state hopping frequency and height of the robot to align with the simulated trajectories. Lastly, the maximum recorded jumping height attained by Q-Bert successfully surpassed the analytical jumping height determined during the design analysis and validated the robots design process.
AFRIKAANS OPSOMMING: Vir beenrobotte om die dinamiese beweeglikheid, mobiliteit en ratsheid wat diere in die natuur bied effektief na te boots, word hoogs dinamiese en robuuste beenlokomotiefstelsels vereis. As verbygaande beenmobiliteit bereik kan word, is beenrobotte in staat om staties en dinamies stabiele bewegings te gebruik, insluitend loop, hardloop en spring, om verskeie topografiese terreine te navigeer en hindernisse in onbekende omgewings te oorkom. As gevolg van die talle kompleksiteite en nie-lineariteite wat egter by beenbeweging betrokke is, het navorsers in die verlede gesukkel om robotstelsels te produseer wat dieselfde vlak van behendigheid en beweeglikheid vorstel as wat deur hul biologiese inspirasie bereik word. Die doel van hierdie tesis was om ’n reeks geartikuleerde tweevoetige robot te ontwerp en te ontwikkel wat in staat is om ratse en verbygaande bewegings uit te voer. Nadat hierdie doelwit bereik is, sal die ontwerpte robotte dien as ’n platform vir toekomstige navorsingskandidate aan die Universiteit van Stellenbosch om beenlokomotiefnakoming op verskeie terreine te ondersoek. Die hooffokus van hierdie navorsing het egter die ondersoek en implementering van sleutelontwerpbeginsels behels, wat in die literatuur ge¨ıdentifiseer is as bydraend tot die vooruitgang van bestaande beenrobotte. Om die ontwerpproses van die tweevoetige robot, genaamd Q-Bert, aan te help, is ’n analitiese analise gebruik om die springprestasie van ’n tweeskakel-geartikuleerde beenmodel vir verskeie skakellengtes en aktuators te ondersoek. Dit het gelei tot die keuse van ’n gepaste skakellengte, saam met ’n Quasi-Direct Drive elektriese aandrywingstransmissie. Daarna is ’n iteratiewe meganiese ontwerpproses uitgevoer om ’n aanvanklike eenpotige prototipe te vervaardig; terwyl voldoende strukturele integriteit behou word sowel as stelselmassa en traagheid tot die minimum beperk word. Verder is die planˆere beweging van beide, die eenpotige en tweevoetige platforms binne die sagittale vlak beperk en ondersteun deur ’n ontwikkelde vertikale planariserende karstelsel. Q-Bert se dinamiese bewegings is voorgestel deur die implementering van ’n virtuele modelbeheerder wat deur Raibert se beheerraamwerk ge¨ınspireer is. Die prestasie van hierdie dinamiese bewegings is ge¨evalueer en geverifieer deur middel van ’n prestasiemaatstaf bekend as vertikale spesifieke behendigheid. Dit het getoon dat die behendigheid van Q-Bert sommige bestaande dinamiese robotte oortref, maar is egter nie in staat om met die mees ratse beenstelsels te kompeteer nie. Die verbygaande vermo¨ens van Q-Bert is vergelyk met langtermyn-horisontrajekte wat deur ’n trajek-optimeringssimulasie gegenereer is en Q-Bert se geskiktheid vir verbygaande bewegings is geverifieer. Q-Bert se geverifieerde geskiktheid is bereik deur periodieke hop-bewegings wat getoon het dat die bestendigetoestand hop-frekwensie en hoogte van die robot in lyn is met die gesimuleerde trajekte. Laastens het die maksimum aangetekende springhoogte wat deur Q-Bert bereik is, die analitiese springhoogte wat tydens die ontwerpontleding bepaal is, suksesvol oortref en die robotontwerpproses bekragtig.
AFRIKAANS OPSOMMING: Vir beenrobotte om die dinamiese beweeglikheid, mobiliteit en ratsheid wat diere in die natuur bied effektief na te boots, word hoogs dinamiese en robuuste beenlokomotiefstelsels vereis. As verbygaande beenmobiliteit bereik kan word, is beenrobotte in staat om staties en dinamies stabiele bewegings te gebruik, insluitend loop, hardloop en spring, om verskeie topografiese terreine te navigeer en hindernisse in onbekende omgewings te oorkom. As gevolg van die talle kompleksiteite en nie-lineariteite wat egter by beenbeweging betrokke is, het navorsers in die verlede gesukkel om robotstelsels te produseer wat dieselfde vlak van behendigheid en beweeglikheid vorstel as wat deur hul biologiese inspirasie bereik word. Die doel van hierdie tesis was om ’n reeks geartikuleerde tweevoetige robot te ontwerp en te ontwikkel wat in staat is om ratse en verbygaande bewegings uit te voer. Nadat hierdie doelwit bereik is, sal die ontwerpte robotte dien as ’n platform vir toekomstige navorsingskandidate aan die Universiteit van Stellenbosch om beenlokomotiefnakoming op verskeie terreine te ondersoek. Die hooffokus van hierdie navorsing het egter die ondersoek en implementering van sleutelontwerpbeginsels behels, wat in die literatuur ge¨ıdentifiseer is as bydraend tot die vooruitgang van bestaande beenrobotte. Om die ontwerpproses van die tweevoetige robot, genaamd Q-Bert, aan te help, is ’n analitiese analise gebruik om die springprestasie van ’n tweeskakel-geartikuleerde beenmodel vir verskeie skakellengtes en aktuators te ondersoek. Dit het gelei tot die keuse van ’n gepaste skakellengte, saam met ’n Quasi-Direct Drive elektriese aandrywingstransmissie. Daarna is ’n iteratiewe meganiese ontwerpproses uitgevoer om ’n aanvanklike eenpotige prototipe te vervaardig; terwyl voldoende strukturele integriteit behou word sowel as stelselmassa en traagheid tot die minimum beperk word. Verder is die planˆere beweging van beide, die eenpotige en tweevoetige platforms binne die sagittale vlak beperk en ondersteun deur ’n ontwikkelde vertikale planariserende karstelsel. Q-Bert se dinamiese bewegings is voorgestel deur die implementering van ’n virtuele modelbeheerder wat deur Raibert se beheerraamwerk ge¨ınspireer is. Die prestasie van hierdie dinamiese bewegings is ge¨evalueer en geverifieer deur middel van ’n prestasiemaatstaf bekend as vertikale spesifieke behendigheid. Dit het getoon dat die behendigheid van Q-Bert sommige bestaande dinamiese robotte oortref, maar is egter nie in staat om met die mees ratse beenstelsels te kompeteer nie. Die verbygaande vermo¨ens van Q-Bert is vergelyk met langtermyn-horisontrajekte wat deur ’n trajek-optimeringssimulasie gegenereer is en Q-Bert se geskiktheid vir verbygaande bewegings is geverifieer. Q-Bert se geverifieerde geskiktheid is bereik deur periodieke hop-bewegings wat getoon het dat die bestendigetoestand hop-frekwensie en hoogte van die robot in lyn is met die gesimuleerde trajekte. Laastens het die maksimum aangetekende springhoogte wat deur Q-Bert bereik is, die analitiese springhoogte wat tydens die ontwerpontleding bepaal is, suksesvol oortref en die robotontwerpproses bekragtig.
Description
Thesis (MEng)--Stellenbosch University, 2023.