Surface modification of commercially available thermoplastics for biological applications

Date
2022-11
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The immobilization of bioactive compounds onto functionalized surfaces has been utilized extensively in biosensors, microarrays, and enzyme reactors. Synthetic polymers, especially commercial thermoplastic films, are ideal for bio-functionalization due to their excellent mechanical properties, durability, and low cost. However, the inert nature of these non-polar commercial polymers necessitates surface modification prior to the immobilization of bioactive compounds. The surface modification of polymeric films, by either physical or chemical means, enables modified films to retain their original bulk properties while simultaneously gaining new surface functionalities. In this study, a UV-induced surface modification technique was investigated to functionalize commercial thermoplastic films for subsequent biological applications. This UV induced surface modification method exploits the photo-sensitive nature of dimethylformamide (DMF). It can also be applied in two ways: (i) using DMF in conjunction with vinylic monomers to introduce specific functionalities to the surface or (ii) using DMF to produce an amine terminated surface. Commercial polyethylene (PE), polypropylene (PP), and poly(ethylene terephthalate)(PET) films were considered for functionalization. Attenuated total reflectance Fourier transform (ATR-FTIR) spectra and Orange II staining results determined that PET films were the most susceptible to surface modification via the UV-induced modification method, compared to PE and PP films. Thus, commercial PET films were selected as the base polymer, to be functionalized with different bioactive compounds, for two separate biological applications. The first application exploited the ability of the UV-induced method to introduce specific functionalities on the surface to produce a pH indicator. First, poly(acrylic acid) was grafted onto the PET film surface via the UV-induced modification method to enable the immobilization of chitosan. The chitosan layer facilitated the adsorption of red cabbage extract to produce a pH indicator. Red cabbage extract contains pigmented phenolics, namely anthocyanins, which undergo conformational changes upon a change in pH resulting in visual colour changes. Scanning electron microscopy (SEM) and ATR-FTIR data confirmed the surface modification and subsequent immobilization. The colour response of the pH indicator upon changes in pH correlated to the conformational changes of anthocyanins as they changed from the flavium cations (red) to the anhydrose bases (purple). The pH indicator displayed a red-pink colour at low pH values, a purple colour at neutral pH values, and yellow-green colour at high pH values. Lastly, it was determined that the pH indicator was most stable at low pH values, especially at pH 3, with the most negligible red cabbage extract migration from the pH indicator into the solution. The second application exploited the ability of the UV-induced method to produce an amine terminated surface to develop a bio-scaffold film for potential microalgae cultivation. First, the PET films were modified via the UV-induced method to produce an aminated PET film surface. Poly(styrene-alt-maleic anhydride) (SMA) was then grafted onto the aminated PET film to facilitate Concanavalin A (Con A) immobilization to produce a bio-scaffold film. Con A is a lectin-binding protein with an affinity for sugar-containing algal cells and can potentially facilitate algal cell immobilization for microalgae cultivation. ATR-FTIR and SEM were used to confirm the successful surface modification and subsequent Con A immobilization onto the modified PET films. The biological activity retention of the immobilized Con A was determined using a horseradish peroxidase assay with the immobilized Con A retaining 7.5% of its original biological activity. In conclusion, our study illustrated the utility of the UV-induced surface modification method for functionalizing inert thermoplastic films, which could then be immobilized with bioactive compounds for various applications.
AFRIKAANS OPSOMMING: Die immobilisering van bioaktiewe verbindings op gefunksionaliseerde oppervlaktes word wyd gebruik in biosensors, mikroskikkings en ensiemreaktors. Sintetiese polimere, veral kommersiële termoplastiese films, is ideaal vir bio-funksionalisasie vanweë hul uitstekende meganiese eienskappe, duursaamheid en lae koste. Die inerte aard van hierdie nie-polêre kommersiële polimere noodsaak egter oppervlakmodifikasie voor die immobilisering van bioaktiewe verbindings. Die oppervlakmodifikasie van polimeriese films, deur óf fisiese óf chemiese middele, stel gemodifiseerde films in staat om hul oorspronklike grootmaat-eienskappe te behou, maar terselfdertyd nuwe oppervlakfunksionaliteite te verkry. In hierdie studie is 'n UV-geïnduseerde oppervlakmodifikasietegniek ondersoek om kommersiële termoplastiese films vir daaropvolgende biologiese toepassings te funksionaliseer. Hierdie UV-geïnduseerde oppervlakmodifikasiemetode ontgin die fotosensitiewe aard van dimetielformamied (DMF). Die tegniek kan op twee maniere toegepas word: (i) deur die gebruik van DMF in samewerking met vinielmonomere om spesifieke funksionaliteite aan die oppervlak bekend te stel of (i) deur die gebruik van slegs DMF om 'n amien-getermineerde oppervlak te produseer. Kommersiële poliëtileen (PE), polipropileen (PP), en poli(etileentereftalaat) (PET) films is oorweeg vir funksionalisering. Verswakte totale reflektansie Fourier transform (ATR-FTIR) spektra en Orange II kleur resultate het bepaal dat PET films die mees vatbaar was vir oppervlak modifikasie via die UV-geïnduseerde modifikasie metode, in vergelyking met PE en PP films. Kommersiële PET-films is dus gekies as die basispolimeer, wat met verskillende bioaktiewe verbindings gefunksionaliseer sou word, vir twee afsonderlike biologiese toepassings. Die eerste toepassing het die vermoë van die UV-geïnduseerde metode gebruik om spesifieke funksionaliteite op die oppervlak in te voer om 'n pH-aanwyser te produseer. Eerstens is poli(akrielsuur) op die PET film oppervlak geënt via die UV-geïnduseerde modifikasie metode om die immobilisering van chitosan moontlik te maak. Die chitosanlaag het die adsorpsie van rooikoolekstrak vergemaklik en sodoende 'n pH-aanwyser produseer. Rooikoolekstrak bevat gepigmenteerde fenole, naamlik antosianiene, wat konformasieveranderinge ondergaan tydens 'n verandering in pH wat lei tot visuele kleurveranderinge. Skandeerelektronmikroskopie (SEM) en ATR-FTIR data het die oppervlakmodifikasie en immobilisasie bevestig. Die kleur verandering vermoë van die pH-aanwyser het korreleer met die konformasieveranderinge van antosianiene soos hulle verander van flaviumkatione (rooi) na watervrye basisse (pers) soos die pH vlak verhoog. Die pH-aanwyser het 'n rooi-pienk kleur by lae pH-waardes vertoon, 'n pers kleur by neutrale pH-waardes, en 'n geel-groen kleur by hoë pH-waardes. Laastens is daar vasgestel dat die pH-aanwyser die stabielste was by lae pH-waardes, veral by pH 3, met die minste rooikoolekstrak-migrasie vanaf die pH-aanwyser na die oplossing. Die tweede toepassing het die vermoë van die UV-geïnduseerde metode gebruik om 'n amien getermineerde oppervlak te produseer om 'n bio-steierfilm vir potensiële mikroalge verbouing te ontwikkel. Eerstens is die PET films via die UV-geïnduseerde metode verander om 'n geamineerde PET-filmoppervlak te produseer. Poli(stireen-alt-maleïensuuranhidried) (SMA) is daarna geënt op die geamineerde PET film om Concanavalin A (Con A) immobilisering te vergemaklik en sodoende 'n bio-steierfilm te produseer. Con A is 'n lektien-bindende proteïen met 'n affiniteit vir suikerbevattende algselle en kan moontlik algsel-immobilisasie vir die kultivering van mikroalge fasiliteer. ATR-FTIR en SEM is gebruik om die suksesvolle oppervlakmodifikasie en daaropvolgende Con A immobilisasie op die gemodifiseerde PET films te bevestig. Die behoud van biologiese aktiwiteit van die geïmmobiliseerde Con A is bepaal deur gebruik te maak van 'n peperwortel-peroksidase-toets. Die geïmmobiliseerde Con A het 7,5% van sy oorspronklike biologiese aktiwiteit behou. Ten slotte, ons studie het die nut van die UV-geïnduseerde oppervlakmodifikasie geïllustreer vir die funksionalisering van inerte termoplastiese films, wat geïmmobiliseer kan word met bioaktiewe verbindings vir verskeie toepassings.
Description
Thesis (MSc) -- Stellenbosch University, 2022.
Keywords
Polymers and polymerization, Surface chemistry, Polymerization, Bioactive compounds, Thermoplastics, UCTD
Citation