Numerical investigation of pressure recovery in an induced draught air-cooled condenser for CSP application.

Date
2021-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This study aims to enhance the performance of an induced draught air-cooled condenser (ACC) by increasing the ACC’s air mass flow rate and heat rejection rate. These improvements are achieved through pressure recovery, which is the conversion of the dynamic pressure at the fan outlets into static pressure. Pressure recovery increases the effective static pressure rise of the axial flow fans in the ACC, resulting in a higher operating airflow rate. Consequently, higher heat removal rates are possible. Stator blade rows and diffusers are capable of pressure recovery. Combinations hereof are tested for the axial flow fan featured in the ACC (i.e. the M-fan) through numerical simulation in OpenFOAM. Diffuser lengths of ldif = dF, 0.4dF and 0.2dF are considered, where dF = 7.315 m is the fan diameter. The most promising discharge configurations are selected for a five-by-four induced draught ACC. The ACC is then analysed with and without these appendages under windless and windy conditions. Wind directed along the shorter and longer axes of the ACC is considered at wind speeds of 3, 6 and 9 m/s. Amongst the diffusers of length ldif = dF, an annular diffuser with both walls diverging at 22° from the axial direction recovers the most pressure for the M-fan over a range of flow rates. For the ldif = 0.4dF length, a conical diffuser with an included angle of 2θ = 32° recovers the most pressure. And a conical diffuser with 2θ = 40° yields the highest pressure recoveries for the ldif = 0.2dF length. However, the ldif = dF annular diffuser is deemed impractical for ACC application due to its long length and wide wall angles. Under windless conditions, both conical diffusers increase the mass flow rate through the five-by-four ACC by ∼2.5 %. As a result, the heat transfer rate improves by 2.0 %. The power consumption of the ACC fans also drops by 5.2–5.5 %, increasing the heat-to-power ratio by 12.4–13.1 W/W. In a light breeze of 3 m/s, the increase in mass flow rate due to the diffusers is 1.7–2.0 %; in a moderate breeze of 6 m/s, the increase is 0.9–1.3 %; and in a fresh breeze of 9 m/s, it is 1.0–1.6 %. There is more variation in the thermal performance results of the ACCs featuring the two different diffusers: The shorter diffuser does not improve the heat transfer rate of the ACC as much as the longer diffuser does under windy conditions. At 6 m/s, the ACC with longer diffusers rejects 1.6–2.2 % more heat than the ACC with shorter diffusers. At 9 m/s, the former rejects ∼2.5 % more heat than the latter. This research demonstrates that discharge diffusers can enhance the performance of an induced draught ACC. The diffusers’ pressure recovery increases the mass flow rate through the ACC, aiding its heat rejection capability. From a performance perspective, the ldif = 0.4dF diffuser is recommended. However, practical considerations might render the shorter ldif = 0.2dF diffuser more suitable.
AFRIKAANSE OPSOMMING: Hierdie studie poog om die werksverrigting van ’n geïnduseerde treklugverkoelde kondensor te verbeter deur die massavloeitempo van lug en hitteverwerpings- tempo van die kondensor te verhoog. Hierdie verbeteringe is behaal deur middel van drukherwinning. Laasgenoemde is die omskakeling van die dina- miese druk by die waaieruitlate na statiese druk. Drukherwinning verhoog die effektiewe drukstyging van die aksiale waaiers in die kondensor, wat lei tot ’n hoër werksvloeitempo. Gevolglik is hoër hitteverwyderingstempo’s moontlik. Leilemme en diffusors kan druk herwin. Kombinasies hiervan is vir die aksiale waaier van die lugverkoelde kondensor (die M-waaier) getoets deur middel van numeriese simulasie in OpenFOAM. Diffusorlengtes van ldif = dF, 0.4dF en 0.2dF is oorweeg, waar dF = 7.315 m die waaierdeursnee is. Die mees belo- wende uitlaatkonfigurasies is vir ’n vyf-by-vier geïnduseerde treklugverkoelde kondensor gekies. Die kondensor is dan in kalm- en winderige toestande met en sonder hierdie aanhangsels ontleed. Wind in die rigting van die korter en langer aste van die kondensor teen snelhede van 3, 6 en 9 m/s is ondersoek. Tussen die diffusors met ’n lengte van ldif = dF, herwin ’n annulêre diffusor met divergerende muurhoeke van 22° die meeste druk vir die M-waaier oor ’n reeks van vloeitempo’s. Vir die ldif = 0.4dF lengte, herwin ’n koniese diffusor met ’n ingeslote hoek van 2θ = 32° die meeste druk. ’n Koniese diffusor met 2θ = 40° lewer die hoogste drukherwinning vir die ldif = 0.2dF lengte. Die ldif = dF annulêre diffusor is egter as onprakties geag vir kondensor-toepassing weens sy lang lengte en wye muurhoeke. Onder windlose omstandighede verhoog beide koniese diffusors die massavloei- tempo deur die vyf-by-vier lugverkoelde kondensor met ∼2.5 %. As gevolg hiervan verbeter die hitte-oordragtempo met 2.0 %. Die drywing van die waaiers in die kondensor neem ook af met 5.2–5.5 %, wat die hitte-tot-drywing verhou- ding met 12.4–13.1 W/W verhoog. In ’n ligte bries van 3 m/s is die toename in massavloeitempo weens die diffusors 1.7–2.0 %; in ’n matige bries van 6 m/s is dit 0.9–1.3 %; en in ’n vars bries van 9 m/s is die toename 1.0–1.6 %. Daar is meer variasie in die termiese prestasieresultate van die kondensors met die twee verskillende diffusors: Die korter diffusor verbeter nie die hitte- oordragtempo van die kondensor soveel soos die langer diffusor in winderige toestande nie. By 6 m/s verwerp die kondensor met langer diffusors 1.6–2.2 % meer hitte as die kondensor met korter diffusors. By 9 m/s verwerp eersge- noemde ∼2.5 % meer hitte as laasgenoemde. Hierdie navorsing toon dat diffusors die werksverrigting van ’n geïnduseerde treklugverkoelde kondensor kan verbeter. Die diffusors se drukherwinning ver- hoog die massavloeitempo deur die kondensor, wat sy hitteverwerpingsvermoë aanhelp. Vanuit ’n prestasie-oogpunt word die ldif = 0.4dF diffusor aanbeveel. Praktiese oorwegings mag egter die korter ldif = 0.2dF diffusor meer geskik maak.
Description
Thesis (PhD)--Stellenbosch University, 2021.
Keywords
Induced draught ACC, Pressure recovery, Diffuser, CSP (Computer program language), UCTD, Axial flow -- Fans (Machinery)
Citation