Long chain branching analysis of polyethylene using advanced fractionation methods

Date
2021-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: olyolefins (POs) have contributed immensely to the quality of life since their commercialization in the mid-1950s and they are modified continuously to suit new applications. PO homopolymer properties for materials such as polyethylene (PE) are strongly influenced by molar mass (MM), molar mass distribution (MMD), as well as branching types and branching distributions. These distributions influence the processability as well as the physical and mechanical properties of the PO; in turn affecting its end-use properties. In the first part of this study, three commercial low density polyethylenes (LDPES) and four long chain branched PEs (LCBPEs) are comprehensively analyzed using various advanced analytical techniques to elucidate their MM and branching structures. Fourier-transform infrared spectroscopy (FTIR) and high-resolution carbon-thirteen nuclear magnetic resonance spectroscopy (13C-NMR) were used for average chemical composition determination. 13C- NMR enabled the identification and quantification of the diverse short chain branches (SCB) e.g., methyl, ethyl, butyl amyl groups as well as long chain branches (LCB). High-temperature quadruple-detector size exclusion chromatography (HT-SEC-d4) revealed the branching differences via specific conformation plots. The differences in the LCB contents of the LCBPEs was readily identified in HT-SEC-d4 using Mark-Houwink-Sakurada (MHS) plots. These LCBs are estimated to be longer than C50 or C60 and this information cannot be readily obtained from 13C-NMR. LDPEs also showed deviation, although less significant, from linear behaviour and influences of both SCB and LCB could be readily identified. It was shown that in the absence of SCB, LCBs encourage formation of compact structures with low chain entanglement. High melting (Tm) and crystallization temperatures (Tc) as well as crystallinities (Xc) for LCBPEs which were different to LDPEs (where SCB was dominant) were obtained using differential scanning calorimetry (DSC). Interaction chromatography (HT-IC) was used to separate differently branched molecules on two different stationary phases using two interaction modes. Owing to the strong adsorptive force on porous graphitic carbon (PGC), the components in the LDPEs and LCBPEs could not be separated efficiently using temperature gradient interaction chromatography (TGIC). However, a solvent gradient (SGIC) could resolve the copolymer and homopolymer components. TGIC was more efficient in separating the differently branched chains when silica was used as the stationary phase due to the absence of a strong adsorptive force. The differences in SCB of the LDPEs could be readily recognised using TGIC wherein silica was used as the stationary phase. These differences were linked to tensile strength and Young’s moduli of the samples. Hyphenation of HT-IC in the first dimension to HT-SEC in the second dimension as in high-temperature two-dimensional liquid chromatography (HT-2D-LC) confirmed the molar mass of the eluting components. In the second part of the study the bulk samples are fractionated using preparative molar mass fractionation (p-MMF) to obtain fractions with distinctly different molar masses. HT-SEC-d4 used for molar mass and branching analyses confirmed 13C-NMR findings that SCB is inherent across the MM fractions of the LDPEs. On the other hand, LCB content was shown to increase with decrease in the fraction molar mass of LCBPE fractions. Chemical composition analyses using HT-TGIC showed that multiple branching distributions were present in the LCBPE fractions as seen in the multimodal elution patterns. Further fractionation of fractions and bulk samples exhibiting multimodal elution behaviours could possibly be carried out to investigate the underlying complex compositions.
AFRIKAANSE OPSOMMING: Polyolefiene (POs) het sedert die kommersialisering daarvan in die middel van die vyftigerjare geweldig bygedra tot die lewensgehalte. Dit word deurlopend aangepas om by nuwe toepassings te pas. PO-homopolimeer-eienskappe vir materiale soos poliëtileen (PE) word sterk beïnvloed deur molêre massa (MM), molêre massaverdeling (MMD), sowel as vertakkingstipes en vertakkingsverspreidings. Hierdie verspreidings beïnvloed die verwerkbaarheid sowel as die fisiese en meganiese eienskappe van die PO. Op die einde beïnvloed dit die eindgebruiks eienskappe daarvan. In die eerste deel van hierdie studie word drie kommersiële lae-digtheid poliëtielenes (LDPES) en vier langkettingvertakte PE's (LCBPE's) breedvoerig geanaliseer. Dit word geanaliseer met die hulp van verskillende gevorderde analitiese tegnieke om die MM en vertakkingsstrukture toe te lig. Fourier-transform infrarooi spektroskopie (FTIR) en hoë-resolusie koolstof-13 kernmagnetiese resonansspektroskopie (13C-NMR) is gebruik vir die gemiddelde bepaling van chemiese samestellings. 13C-NMR het die identifisering en kwantifisering van die verskillende kortkettingtakke (SCB) moontlik gemaak, bv., metiel-, etiel-, butielamilgroepe sowel as langkettingtakke (LCB). Hoë temperatuur grootte uitsluiting chromatografie met 'n viervoudige detektor (HT-SEC-d4) het die vertakkingsverskille via spesifieke bouvormplotte aan die lig gebring. Die verskille in die LCB-inhoud van die LCBPE's is geïdentifiseer met HT-SEC-d4 met behulp van Mark-Houwink-Sakurada (MHS) erwe. Na raming is hierdie LCB's langer as C50 of C60 dan kan hierdie inligting nie maklik verkry word van 13C-NMR nie. LDPE's het ook afwyking getoon, hoewel minder betekenisvol, van lineêre gedrag. Die beinvloed van beide die SCB en LCB kon maklik geïdentifiseer word. Daar is aangetoon dat LCB's in die afwesigheid van SCB, die vorming van kompakte strukture met 'n lae ketting verstrengeling aanmoedig. hoë smelt- (Tm) en kristallisasietemperature (Tc) sowel as kristalliniteite (Xc) vir LCBPE's, wat verskil van LDPE's (waar SCB oorheersend was), is verkry met behulp van differensiële skandering kalorimetrie (DSC). Interaksiechromatografie (HT-IC) word gebruik om verskillende vertakte molekules te skei. Dit word op twee verskillende stilstaande fases met behulp van twee interaksiemetodes gedoen. As gevolg van die sterk adsorptiewe krag op poreuse grafitiese koolstof (PGC), kon die komponente in die LDPE's en LCBPE's nie doeltreffend geskei word met behulp van temperatuur gradiënteinteraksiechromatografie (TGIC) nie.'n Oplosmiddelgradiënt (SGIC) kan egter die kopolimeer- en homopolymer komponente oplos. TGIC was meer doëltreffend om die verskillende vertakte kettings te skei as silika as die stilstaande fase gebruik is weens die afwesigheid van 'n sterk adsorptiewe krag. Die verskille in SCB van die LDPE's kan maklik herken word met behulp van TGIC waarin silika as die stilstaande fase gebruik is. Hierdie verskille is gekoppel aan trek sterkte en Young se moduli van die monsters. Die gebruik van HT-IC in die eerste dimensie en HT-SEC in die tweede dimensie, het die molêre massa van die eluerende komponente bevestig. In die tweede deel van die studie word die grootmaat monsters gefrakteer met behulp van voorbereidende molêre massa-fraksionering (p-MMF) om breuke met verskillende molêre massas te verkry. HT-SEC-d4 wat gebruik word vir molêre massa en vertakkingsanalises, het 13C-NMR bevindings bevestig dat SCB inherent is aan die MM-breuke van die LDPE's. Aan die ander kant is dit aangetoon dat die LCB-inhoud toeneem met die afname in die fraksie molêre massa van LCBPE-breuke. Chemiese samestellingsanalises met behulp van HT-TGIC het getoon dat meervoudige takverdelings in die LCBPE-breuke teenwoordig was. Dit is waargeneem in die multimodale elusiepatrone. Verdere fraksionering van breuke en grootmaat monsters met multimodale elusiegedrag kan moontlik uitgevoer word om die onderliggende komplekse samestellings te ondersoek.
Description
Thesis (MSc)--Stellenbosch University, 2021.
Keywords
Chromatography, Polyethylene, Temperature gradient inversions, UCTD, Infrared spectroscopy
Citation