An investigation into the imager pointing accuracy and stability for a CubeSat Using a CubeADCS in sun-synchronous low earth orbits

Date
2021-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The past decade has seen a rapid increase in investment and interest into the CubeSatellite industry, with a particular rise in interest seen from the commercial sector. The demand for miniaturised satellite technology has further fuelled the need for miniaturised attitude determination and control systems, without which, most mission objectives would be unattainable. Few companies exist whose sole purpose is to provide CubeSatellite mission designers with the control system they need to achieve their mission objectives. One such company which has emerged, is the South African born CubeSpace Satellite Systems RF (Pty) Ltd. whose CubeADCS does exactly this. This thesis sought to investigate the imager pointing accuracy that can be achieved by a CubeSatellite in a sun-synchronous low Earth orbit, equipped with a CubeADCS. An initial investigation found that components such as star trackers and reaction-wheels are critical to high accuracy pointing, and that other systems in industry have been able to achieve arcsecond pointing accuracies. An in-depth investigation was conducted into the underlying components of the CubeADCS, consisting of both a theoretical study and practical hardware investigation, which aimed to understand the inner workings of each component, in addition to identifying and characterising their primary sources of error. An accurate simulation space environment reflective of that experienced by a CubeSatellite in low Earth orbit was constructed. A model of the CubeADCS model was additionally developed from the results of the subcomponent investigation to be tested by means of comprehensive simulations. The CubeADCS was investigated in its ability to track a constant reference, in addition to its ability to perform an accurate target tracking manoeuvre in an attempt to image a location on Earth’s surface. Several scenarios were investigated, which aimed to observe the effects of changing various size, orientation, star tracker placements, and attitude estimator parameters. Simulation results revealed that the CubeADCS is capable of achieve pointing accuracies of within 32′′ when following a constant reference, and within 31′′ during target tracking manoeuvres in Sun-synchronous orbits. A stability analysis revealed that the CubeADCS would be acceptable for the likes of stellar observation missions, making it more than adequate to satisfy Earth observation stability requirements.
AFRIKAANSE OPSOMMING: Die afgelope dekade is gekenmerk deur aansienlike groei in belangstelling en beleggings in die CubeSat industrie, spesifiek vanuit die kommersiële sektor. Hierdie aanvraag na miniatuur sateliet tegnologie het die behoefte aan miniatuur orientasie bepalers en bedryfstelsels, ’n voorvereiste vir komplekese satelliet missies, aangevuur. Daar bestaan slegs ’n beperkte aantal maatskappye wat uitsluitlik fokus op die verskaffing van beheerstelsels aan CubeSat missies. Een van hulle is die Suid Afrikaans gebaseerde privaat kommersiële maatskappy, CubeSpace Satellite Systems RF (Pty) Ltd, wat met ’n innoverende CubeADCS stelsel oplossings bied aan CubeSat missie ontwerpers om hulle doelwitte te behaal. Hierdie tesis het ten doel om die optimale kamera rigakkuraatheid wat ’n CubeSat, toegerus met ’n CubeADCS substelsel, in ’n sonsinkrone lae-aarde wentelbaan kan bereik te bepaal. ’n Aanvanklike ondersoek het bevind dat spesifieke CubeSat onderdele soos sterkameras en reaksiewiele, ’n kritiese rol speel in optimale rigakkuraatheid, en dat akkuraatheidsvlakke van boogsekondes deur kompeterende satellietstelsels bereik word. ’n Indiepte ondersoek van die onderliggende komponente van die CubeADCS stelsel is uitgevoer. Die ondersoek, bestaande uit ’n teoretiese analise en ’n praktiese ondersoek van die hardware, is uitgevoer om die individuduele funksionaliteite van elke komponent te verstaan. Elke onderliggende komponent se werkverrigting foutdrywers en die grootte daarvan is ook geïdentifiseer en beskryf. ’n Akkurate ruimte simulasie omgewing wat die invloed van ’n lae-aarde wentelbaan op ’n CubeSat implementeer is ontwikkel. ’n Model van die CubeADCS stelsel is ontwikkel, gebasseer op die bevindinge van die subkomponent ondersoek, en in omvattende simulasies in die ruimte simulasie omgewing getoets. Die CubeADCS stelsel is getoets vir sy vermoë om ’n konstante verwysingspunt te volg sowel as om ’n akkurate teiken volging uit te voer tydens die neem van ’n foto van ’n teiken op die aardoppervlak. Verskeie scenarios is geanaliseer om die effek van veranderinge in groottes, orientasie, posisionering van sterkameras, asook verandering in orientasie afskatter parameters te evalueer. Simulasie resultate het getoon dat CubeADCS rig akkuraathede van minder as 32 boogsekondes behaal tydens volging van konstante verwysingspunte en beter as 31 boogsekondes gedurende teikenvolging. ’n Stabiliteitsanalise het aangetoon dat die CubeADCS stelsel voldoen aan die vereistes vir sterrekundige waarnemingsmissies, en dus heeltemal geskik is vir aardwaarneming satellietstelsels.
Description
Thesis (MEng)--Stellenbosch University, 2021.
Keywords
Spaceships -- Control systems, Miniaturized satellite, Satellites, Synchronous, Sun-synchronous -- Orbit, UCTD
Citation