dc.contributor.advisor | Janelidze, Zurab | en_ZA |
dc.contributor.author | Van der Berg, Ineke | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. Division Mathematics. | en_ZA |
dc.date.accessioned | 2021-03-06T12:36:30Z | |
dc.date.accessioned | 2021-04-21T14:31:07Z | |
dc.date.available | 2021-03-06T12:36:30Z | |
dc.date.available | 2021-04-21T14:31:07Z | |
dc.date.issued | 2021-03 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/109901 | |
dc.description | Thesis (MSc)--Stellenbosch University, 2021. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Ordinal numbers are transfinite generalisations of natural numbers, and are usually
defined and studied concretely as special types of sets. In this thesis we explore an
abstract approach to developing the theory of ordinal numbers, where we present
various axiomatisations of an ordinal number system and prove their equivalence.
Since ordinal numbers do not form a set, in order to develop such a theory one needs
to extend the usual framework of Zermelo-Fraenkel set theory. Among several such
possible extensions, we pick the one that is based on the notion of a Grothendieck
universe. While some of the results obtained in this thesis are merely adaptations of
known results to this context, some others are new even to classical set theory. Among
these is a definition and a universal property of the ordinal number system that mimics
the classical Dedekind-Peano approach to the natural number system. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Ordinaalgetalle is transfiniete veralgemenings van die telgetalle, en word gewoonlik
konkreet gedefinieer en bestudeer as spesiale soorte stelle. In hierdie tesis ondersoek
ons ’n abstrakte benadering tot die ontwikkeling van ordinaalgetalteorie, waarin ons
verskeie aksiomatiserings van ordinaalgetalstelsels gee, en hul ekwivalensie bewys.
Aangesien ordinaalgetalle nie ’n stel vorm nie, is dit nodig om die standaard raamwerk
van Zermelo-Fraenkel stelteorie uit te brei om so ’n teorie te kan ontwikkel. Vanuit
verskeie moontlike raamwerke kies ons een wat op die idee van ’n Grothendieck
universum gebaseer is. Alhoewel sommige van die bevindings in hierdie tesis slegs
aanpassings van bekende bevindings na hierdie konteks is, is ander nuut selfs in
klassieke stelteorie. Die nuwe bevindings sluit ’n definisie en universele eienskap
van die ordinaalgetalstelsel in, wat die klassieke Dedekind-Peano benadering tot die
telgetalstelsel naboots. | af_ZA |
dc.format.extent | vi, 75 pages | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Alexandrov topology | en_ZA |
dc.subject | Categories (Mathematics) | en_ZA |
dc.subject | Dedikind sums | en_ZA |
dc.subject | Grothendieck categories | en_ZA |
dc.subject | Numbers, Natural | en_ZA |
dc.subject | Set theory | en_ZA |
dc.subject | Numbers, Ordinal | en_ZA |
dc.subject | Transfinite numbers | en_ZA |
dc.subject | Axiomatic set theory | en_ZA |
dc.subject | UCTD | |
dc.title | An axiomatic approach to the ordinal number system | en_ZA |
dc.type | Thesis | en_ZA |
dc.description.version | Masters | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |