The influence of temperature on the cracking of plastic concrete

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The temperature of fresh concrete is highly susceptible to changes while still in the plastic state which typically ranges between 4 to 8 hours after placement. High early age concrete temperatures can lead to many problems such as an increased rate of cement hydration as well as an increased rate of moisture loss from freshly placed concrete which can ultimately influence the occurrence of plastic shrinkage cracking. There are several internal and external factors that may influence the temperature of concrete during its lifespan such as solar radiation, evaporative cooling, curing and the mix design. During the background study of this research report, little literature could be found on the effects of these influencing factors on the temperature and cracking of fresh concrete even though these factors greatly influence the early age plastic cracking of concrete. In reality concrete is casted under a variety of temperature conditions (ranging from extremely high to extremely low) which can greatly influence the behaviour of the concrete while still in the plastic phase. However, the lack of understanding how concreate reacts under these conditions create instances where cracks still form due to plastic shrinkage and settlement. There is therefore a need to understand how these factors influence the temperature of concrete as well as how this then influences the plastic cracking of concrete. The objective of this study is to provide an understanding of the temperature development over the thickness of a concrete slab when exposed to different initial concrete and ambient temperatures as well as the effect these factors has on plastic shrinkage cracking. To achieve the objective, in in-depth background study as well as two experimental programs were conducted on fresh concrete. The first part of this study investigates the influence of solar radiation on plastic shrinkage cracking by measuring the concrete temperature, pore water evaporation, shrinkage, settlement and plastic shrinkage cracking magnitude. the direct normal radiation was eliminated by placing one set of specimens in the sun and the other in the shade while keeping all other external variables constant. It is concluded that exposing the specimens to direct normal solar radiation significantly increases the surface and core temperatures of concrete specimens. The evaporation of pore water is significantly higher when exposed to direct normal radiation. Furthermore, plastic shrinkage cracking was more severe in he presence of direct normal radiation even though the critical period was reduced. The results indicate that eliminating direct normal radiation can significantly reduce plastic shrinkage cracking. During the second part of this study the influence of varying initial concrete and ambient temperatures and the effects these have on fresh concrete were investigated by measuring the concrete temperature, pore water evaporation, shrinkage, settlement, setting times and plastic shrinkage cracking magnitude. Tests were conducted in a climate chamber where all the ambient conditions, including the air temperature, relative humidity and wind velocity, were controlled. It is concluded that exposure to higher initial concrete and ambient temperatures significantly increases the average temperature over the thickness of the concrete. The evaporation of pore water is higher when exposed to higher temperature conditions. The plastic shrinkage and settlement as well as the plastic shrinkage crscking was more severe in the presence of higher initial concrete and ambient temperatures even though the critical period was reduced due to an increase in the concrete temperature. it is also concluded that the surface temperature can be used as a good representation of temperature development in the lower layers of the concrete. The knowledge gained in this study can ultimately be used to assist engineers in designing and constructing structural elements to minimize the risk of these cracks.
AFRIKAANSE OPSOMMING: Die temeratuur van vars beton is baie vatbaar vir verandering terwyl dit nog in die plastiese fase is, wat gewoonlik tussen 4 en 8 ure na plasing duur. Hoë beton temperature op 'n vroeë ouderdom kan lei tot baie probleme, soos 'n verhoogde sementhidrasietempo, sowel as 'n verhoogde verdampingstempo wat uiteindelik die vorming van plastiese krimp-krake in vars beton kan beïnvloed. Daar is verskeie interne en eksterne faktore wat die temperatuur van beton gedurende sy lewensduur kan beïnvloed, soos sonradiasie, verdampingsverkoeling, kuring, meng ontwerp ens. Min literatuur is gevind, gedurende de agtergrondstudie van hierdie navorsingsverslag, oor die invloed van hierdie faktore op die temperatuur en vorming van krake in vars beton, alhoewel hierdie faktore die plastiese krake van beton op 'n vroeë ouderdom drastie kan beïnvloed. In werklikheid word beton gegiet onder verskeie temperatuurtoestande (wat wissel van uiters hoog to uiters laag) wat die gedrag van die beton tot 'n groot mate kan beïnvloed tewyl dit nog in die plastiese fase is. Die gebrek aan begrip hoe beton onder hierdie toestande reageer, veroorsaak egter dat daar steeds krake ontstaan as gevolg van plastiese krimp. Daar is dus 'n behoefte om te verstaan hoe hierdie faktore die temperatuur, sowel as die plastiese krake van vars beton, beïnvloed. Die doel van hierdie studie is om 'n begrip te ontwikkel oor die temperatuur ontwikkeling oor die dikte van 'n betonblad wanneer dit blootgestel word aan verskillende beton- en omgewingstemperature, asook die effek wat hierdie faktore op die vorming van plastiese krimp-krake het. Om die doel te bereik is 'n deeglike agtergronstudie, sowel as twee eksperimentele programme, uitgevoer. Die eerste deel van hierdie studie ondersoek die invloed van sonradiasie op plastiese krimp-krake deur die beton temperatuur, verdampingstempo, krimp, versakking, asook die grootte van die plastiese krimp-krake te meet. Gedurende hierdie toetse was die direkte normaal radasie geëlimineer deur een stel monsters in die son en die ander in die skaduwee te plaas, terwyl alle andre eksterne veranderlikes konstant was. Na afloop van hierdie toetse kan die gevolgtrekking gemaak word dat, blootstelling aan direkte son radiasie die oppervlak- en kern temperature van dié beton monsters aansienlik verhoog het. Die verdamping van porie water is ook hoër as dit blootgestel word aan direkte normale radiase. Verder was die grootte van plastiese krimp-krake meer gedurende blootstelling aan direkte normale radiase, alhowel die kritieke periode vir die krake verminder het. Die resultate dui aan dat die uitskakeling van direkte normale radiasie die vorming en grootte van plastiese krimp-krake aansienlik verminder. Gedurende die tweede deel van hierdie studie is die invloed van verskillende aanvanklike beton- en omgewingstemperature en die effekte daarvan op vars beton ondersoek deur die beton temeratuur, verdampingstempo, krimp, versakking, set tye, sowel as die grootte van die plastiese krimp-krake te meet. Toetse is uitgevoer in 'n klimaatkamer waar al die omgewingstoestande, insluitend die lugtemperatuur, relatiwe humiditeit in windsnelheid, beheer is. Die gevolgtrekking is dat blootstelling aan hoër aanvanklike beton- en omgewingstemperature die gemiddelde temperatuur aansienlik verhoog oor die dikte van die beton. Die verdamping van porie water is ook hoër as dit aan hoër temperatuur toestande blootgestel word. Die plastiese krimp, asook die grootte en teenwoordigheid van plastiese krimp-krake, was erger gedurende hoër aanvanklike beton- en omgewingstemperature, alhoewel die kritieke periode vir die krake verminder is as gevolg van 'n toename in die beton temperatuur. Die gevolgtrekking word ook gemaak dat die oppervlaktempertuur gebruik kan word as 'n goeie aanduiding van die temperatuur ontwikkeling in die kern van die beton vir die monsters wat in die studie gebruik is. Die kennis wat in hierdie studie opgedoen is, kan uiteindelik gebruik word om ingenieurs te help gedurende die ontwerp en konstruksie van strukturele elemente, om die risiko van hierdie krake te verminder.
Description
Thesis (MEng)--Stellenbosch University, 2021.
Keywords
Temperature, Evaporation, Solar radiation, UCTD, Plastic concrete, Cracking of concrete
Citation