ITEM VIEW

The definable (Q, Q)-theorem for distal theories

dc.contributor.authorBoxall, Garethen_ZA
dc.contributor.authorKestner, Charlotteen_ZA
dc.date.accessioned2019-10-10T13:56:51Z
dc.date.available2019-10-10T13:56:51Z
dc.date.issued2018
dc.identifier.citationBoxall, G. & Kestner, C. 2018. The definable (Q, Q)-theorem for distal theories. Journal of Symbolic Logic, 83(1):123-127, doi:10.1017/jsl.2016.72en_ZA
dc.identifier.issn1943-5886 (online)
dc.identifier.issn0022-4812 (print)
dc.identifier.otherdoi:10.1017/jsl.2016.72
dc.identifier.urihttp://hdl.handle.net/10019.1/106622
dc.descriptionCITATION: Boxall, G. & Kestner, C. 2018. The definable (Q, Q)-theorem for distal theories. Journal of Symbolic Logic, 83(1):123-127, doi:10.1017/jsl.2016.72.en_ZA
dc.descriptionThe original publication is available at https://www.cambridge.org/core/journals/journal-of-symbolic-logicen_ZA
dc.description.abstractAnswering a special case of a question of Chernikov and Simon, we show that any non-dividing formula over a model M in a distal NIP theory is a member of a consistent definable family, definable over M.en_ZA
dc.description.urihttps://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/definable-p-qtheorem-for-distal-theories/DD72242F3C7E3AA53FCFB9D76069F647
dc.format.extent5 pagesen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherAssociation for Symbolic Logicen_ZA
dc.subjectNIP groups (Mathematics)en_ZA
dc.subjectDistal theoriesen_ZA
dc.subjectMorley sequenceen_ZA
dc.subjectTheoremsen_ZA
dc.titleThe definable (Q, Q)-theorem for distal theoriesen_ZA
dc.typeArticleen_ZA
dc.description.versionPublisher's versionen_ZA
dc.rights.holderAssociation for Symbolic Logicen_ZA


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

ITEM VIEW