dc.contributor.advisor | Von Backstrom, T. W. | en_ZA |
dc.contributor.advisor | Sebitosi, A. B. | en_ZA |
dc.contributor.advisor | Lubkoll, M. | en_ZA |
dc.contributor.author | McDougall, David | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering (CRSES) | en_ZA |
dc.date.accessioned | 2019-02-27T11:43:33Z | |
dc.date.accessioned | 2019-04-17T08:31:24Z | |
dc.date.available | 2019-02-27T11:43:33Z | |
dc.date.available | 2019-04-17T08:31:24Z | |
dc.date.issued | 2019-04 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/106154 | |
dc.description | Thesis (MEng)--Stellenbosch University, 2019. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Conventional concentrating solar power (CSP) plants use Rankine cycles as
their thermal power generation cycle. Recent developments have shown the
potential for combined cycle (CC) CSP plants to achieve higher e ciencies
and lower costs than conventional CSP plants. One con guration of the
Brayton cycle of a CC plant is to utilise a pressurised air receiver between the
compressor and turbine to offset or omit fuel consumption. The Spiky Central
Receiver Air Pre-heater (SCRAP) concept, categorised as a metallic tubular
pressurised air receiver, has been shown to exhibit promising performance for
the purpose of pre-heating the air stream prior to it entering a combustion
chamber or cascading secondary receiver.
The receiver's absorber assemblies, the so-called spikes, are designed to
transfer the incoming solar radiation energy to the pressurised air stream.
With the hemisphere of the spike tip exposed to the solar field, it experiences
the highest flux with the maximum expected at the hemisphere's centre. Jet
impingement is employed here because the elevated local heat transfer around
the maximum flux region cools the receiver material, which reduces external
thermal losses. A reduced maximum temperature also permits a wider range
of materials.
This thesis presents further insight into the local heat transfer
characteristics and fluid mechanical properties of the spike tip jet impingement,
which is critical to the concept feasibility. Impingement cooling, in the context
of a Brayton cycle, presents a trade-off between the internal pressure drop and
the external heat losses.
To analyse the local heat transfer characteristics of the cooling mechanism
in the SCRAP receiver, a computational fluid dynamics (CFD) model was
developed and validated against experimental data, from literature, of a flow
field of a similar nature. It was found that the three-equation k-! SST
RANS turbulence model, with the intermittency transition extension, performs
well at predicting the Nusselt number surface distributions for designs with
dimensionless characteristics similar to those of the SCRAP receiver's spike
tip. Area-weighted averages of the distributions were predicted within 10% of
the experimental results from literature.
It was identified that adding a nozzle to the spike tip is necessary to achieve
the required cooling of the spike tip, which experiences highly concentrated
solar flux. Using the validated CFD model, a detailed parametric analysis was
conducted to characterise the jet impingement cooling capabilities in the spike
tip of SCRAP. It was found that the nozzle diameter is the most sensitive
geometric parameter. Decreasing the nozzle diameter drastically increases
pressure drop. However, this accelerates the fluid, which significantly increases
heat transfer.
The pressure drop and thermal efficiency of a pressurised air receiver both
affect the Brayton cycle efficiency. For this reason, a method of calculating
a cycle efficiency that considers receiver pressure drop and thermal losses
was suggested. The resulting efficiency is a quantity that permits a trade-off
between heat transfer and pressure drop. A set of design points with varying
nozzle diameters, d, showed that a maximum cycle efficiency is achieved for
10mm d 2mm. The suggested efficiency quantification tool can be used
in further work for design analyses of solarised gas turbines. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Konvensionele gekonsentreerde sonkrag (GSK) stasies maak gebruik van die
Rankine siklus as die termiese kragopwekking siklus. Onlangse ontwikkelings
vir gekombineerde siklus (GS) GSK stasies het potensiaal getoon om hoër
doeltreffendheid teen 'n laer koste as konvensionele GSK stasies te behaal. Een
aspek van die Brayton-siklus van 'n GS-aanleg is om 'n hoëdruk lugontvanger
tussen die kompressor en turbine te gebruik om brandstofverbruik te verskuif of
vry te spring. Die Stekelrige Sentrale Ontvanger Lug Voorverwarmer (SCRAP)
konsep, gekategoriseer as 'n metaalbuis hoëdruk lug ontvanger, het belowende
verrigting getoon vir die doel om die lugstroom te voorverhit voordat dit die
verbrandingskamer of inlyn sekondêre ontvanger binnegaan.
Die ontvanger se absorpsie-samestellings, die sogenaamde spikes, is ontwerp
om die inkomende stralingsenergie van die son na die hoëdruk lugstroom oor te
dra. Met die halfrond van die spitspunt wat aan die sonveld blootgestel word,
ervaar dit die hoogste hitte-vloed met die maksimum wat by die middelpunt
van die halfrond verwag word. Straal botsing word hier ingespan omdat
die verhoogde plaaslike hitte-oordrag rondom die maksimum vloedgebied
die ontvangermateriaal afkoel, wat eksterne termiese verliese verminder. 'n
Verlaagde maksimum temperatuur laat ook 'n wyer verskeidenheid materiale
toe.
Hierdie proefskrif bied 'n verdere insig in die plaaslike hitte-oordrag
eienskappe en vloei-meganiese eienskappe van die spitspunt straalbotsing wat
krities is vir die konsep haalbaarheid. Straalbotsing verkoeling in die konteks
van 'n Brayton siklus bied 'n oorweging tussen die interne drukval en eksterne
hitteverliese.
Om die plaaslike hitte-oordrag eienskappe van die verkoelingsmeganisme
in die SCRAP ontvanger te ontleed, is 'n berekeningsvloeistofdinamika (CFD)
model ontwikkel en bevestig teen eksperimentele data uit die literatuur van 'n
vloeibare veld van soortgelyke aard. Daar is bevind dat die drievergelyking
k-! SST RANS turbulensie model met die afwisseldende oorgang uitbreiding
goed vaar met die voorspelling van die Nusselt nommer oppervlakverdelings
vir ontwerpe met dimensielose eienskappe soortgelyk aan dié van die SCRAP
ontvanger se spitspunt. Gebied-geweegde gemiddeldes van die verspreidings is
voorspel binne 10% van die eksperimentele resultate uit literatuur.
Dit is vasgestel dat die toevoeging van 'n spuitstuk aan die spitspunt
nodig is om die vereiste verkoeling van die spitspunt te behaal wat hoogs
gekonsentreerde hittevloed van die son sal ervaar. Met behulp van die
bevestigde CFD model, is 'n gedetailleerde parametriese analise uitgevoer om
die straal botsing in die spitspunt van SCRAP te beskryf. Daar is bevind
dat die spuitdiameter die sensitiefste geometriese parameter is. Vermindering
in die spuitstuk diameter verhoog drasties die drukval, maar dit versnel die
vloeistof wat hitte-oordrag aansienlik verhoog.
Die drukval en die termiese doeltre endheid van 'n hoëdruk lugontvanger
het 'n invloed op die Brayton-siklus doeltre endheid. Om hierdie rede is
'n metode vir die berekening van 'n siklusdoeltre endheid voorgestel, wat
die ontvanger se drukval en termiese verliese in ag neem. Die gevolglike
doeltreffendheid is 'n hoeveelheid wat 'n afwisseling tussen hitte-oordrag en
drukval moontlik maak. 'n Stel ontwerppunte met veranderedne spuitstuk
diameters, d, het getoon dat 'n maksimum siklusdoeltreffendheid word behaal
vir 10mm d 12mm. Die voorgestelde doeltreffendheid kwantifisering
instrument kan gebruik word in verdere werk vir ontwerp ontledings van
sonkrag gasturbines. | af_ZA |
dc.format.extent | xv, 115 pages : illustrations | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.subject | Solar thermal conversion | en_ZA |
dc.subject | Solar thermal energy | en_ZA |
dc.subject | Power plants | en_ZA |
dc.subject | SCRAP | en_ZA |
dc.subject | Spiky Central Receiver Air Pre-Healer | en_ZA |
dc.subject | CFD | en_ZA |
dc.subject | Computational fluid dynamics | en_ZA |
dc.subject | Fluid dynamics -- Computational simulation | en_ZA |
dc.subject | Hybrid electric vehicles | en_ZA |
dc.subject | Cooling | en_ZA |
dc.subject | Air jets | en_ZA |
dc.subject | Heat -- Transmission | en_ZA |
dc.subject | Transmission of heat | en_ZA |
dc.subject | Heat transfer | en_ZA |
dc.subject | UCTD | |
dc.title | Numerical simulation of jet impingement cooling of the inside of a hemisphere with application to SCRAP. | en_ZA |
dc.type | Thesis | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |