2018-12-11 12:00 - Maintenance complete.

Computational modelling techniques to determine patellofemoral joint loads.

Atkinson, Julian David (2018-03)

Thesis (MEng)--Stellenbosch University, 2018.

Thesis

ENGLISH ABSTRACT: Neuromechanical computational tools provide insight into the loads around human joints that cannot be measured in vivo. An automated computational pipeline, designed to run with minimal user intervention that outputs joint kinematics, joint moments, muscle parameters and muscle forces is outlined in this project. The tool uses OpenSim (Simtk-confluence.stanford.edu, 2017) to determine the inputs into CEINMS (CEINMS Simtk.org, 2017), which uses this information in conjunction with the electromyographic (EMG) data to inform a neuromusculoskeletal model that outputs muscle forces and adjusted muscle parameters. These computational tools are open source and freely available. Thirty patellofemoral pain (PFP) subjects were tested during the experimental phase of the project with the EMG, ground reaction force (GRF) and kinematic data of five of the subjects, before and after eight weeks of physiotherapeutic intervention, acting as an input to the tool. The results of the tool can then be used to quantify changes in patients’ underlying biomechanics to provide insight into proposed risk factors of PFP. Before clinical questions can be answered using the results obtained from data, it is crucial to determine whether the outputs of the tool are clinically relevant, and to what extent experimental and modelling errors influence the results. The processing techniques used to filter and smooth the GRF, marker and EMG data is investigated. It is shown that filtering the marker and force plate data at different frequencies introduces an artefact at the point of impact for the knee joint moment. Changing EMG filtering frequency is shown to affect the magnitude of muscles forces produced by CEINMS. A sensitivity of the CEINMS optimiser to biarticulate muscles is identified. However, the exact causal relationship is not known and requires further research. The muscle force results of CEINMS are also affected by changing the EMG normalisation technique. Using maximum voluntary contractions (MVC) to normalise the EMGs is shown to produce muscle forces of a different magnitude to using walking trial maximums (WTM). Finally, the results across sessions showed high repeatability for the kinematics, dynamics and muscle forces with a coefficient of determination (COD), 𝑅2 of 0.93, 0.93 and 0.83 respectively. All the subjects showed significant change in their muscle forces across sessions (𝑃<0.05) for the majority of their muscles, with only subject AKP 29 showing significant change in less than 14 of the 16 tested muscles. The muscle force results produced shapes that are comparable to literature. While it is concluded that realistic muscle forces are produced, the full extent to which the modelling and experimental errors account for the changes seen between subjects across sessions needs to be further researched. This project presents a semi-automated computational tool that enables joint moment and muscle force estimation from motion laboratory gait data. Recommendations on data capturing, storage and processing are outlined, which are applicable for related studies requiring biomechanical analysis of human joints.

AFRIKAANSE OPSOMMING: Neuro-meganiese numeriese metodes kan gebruik word om laste in die menslike gewrig wat nie in-vivo gemeet kan word nie te beraam. 'n Outomatiese berekeningspyplyn wat minimale gebruiker intervensie benodig, is ontwikkel. Die uittree van die pyplyn is kinematika, spier parameters en spier kragte. Die metode maak van OpenSim (Simtk-confluence.stanford.edu, 2017) gebruik om insette vir CEINMS (CEINMS Simtk.org, 2017) te genereer. Hierdie inligting word dan gebruik om in samewerking met EMG's 'n neuro-spier-skelet model te dryf wat spierkrag en parameters beraam. Die berekeningspyplyn is gebaseer op gratis sagteware wat vrylik bekombaar is. Dertig patellofemorale pyn (PFP) pasiënte is tydens die eksperimentele fase van die projek getoets. Die elektromiografiese (EMG), grond reaksie krag (GRK) en kinematiese data van vyf van die pasiënte, voor en na agt weke se fisioterapeutiese intervensie, is gebruik in die studie. Die resultate van die berekeningspyplyn is gebruik om veranderinge in pasiënte se onderliggende biomeganika te kwantifiseer om sodoende insig te kry in voorgestelde risiko faktore van PFP. Voordat kliniese vrae beantwoord kon word met behulp van die data, was dit noodsaaklik om vas te stel of die uitsette van die berekeningspyplyn klinies relevant is en in watter mate eksperimentele en modelleringsfoute die resultate beïnvloed. Die verwerkingstegnieke wat gebruik is om die GRK-, merker- en EMG-data te filter is ondersoek. Daar is gevind dat die filter parameters van die merker en kragplaat data by verskillende frekwensies 'n artefak in kniegewrig momente tydens die punt van impak veroorsaak. Die verandering van EMG filter frekwensie het getoon dat die grootte van spierkrag wat deur CEINMS voorspel is, beïnvloed word. Die CEINMS-optimeerder gee teenstrydige resultate vir twee-gewrig-spiere. Die oorsaak in hierdie verband kon nie bepaal word nie en vereis verdere ondersoek. Die spierkrag uitslae vanaf CEINMS word ook beïnvloed deur die EMG normaliseringstegniek: Die gebruik van maksimum vrywillige kontraksies (MVK) in teenstelling met maksimum-binne-lopie-waardes (MBLW) lewer spierkragte van verskillende groottes. Die uitslae oor sessies toon hoë herhaalbaarheid vir die kinematika, dinamika en spierkragte met 'n koëffisiënt van vasstelling (𝑅2) van 0.93, 0.93 en 0.83 onderskeidelik. Al die pasiënte het 'n beduidende verandering in hul spierkrag oor die sessies (P <0.05) ondergaan met die uitsondering van een pasiënt (AKP 29) wat 'n beduidende verandering in minder as 14 van die 16 spiere toon. Die spierkrag resultate is goed vergelykbaar met die literatuur. Terwyl daar tot die gevolgtrekking gekom word dat realistiese spierkragte geproduseer is, moet die volledige mate waarin die modellerings- en eksperimentele foute verantwoordelik is vir die veranderinge tussen pasiënte oor sessies verder ondersoek word. Hierdie projek bied 'n semi-outomatiese berekeningspyplyn aan wat spierkrag beraming aan die hand van bewegingslaboratorium data bemoontlik. Aanbevelings rakende data versameling, berging en verwerking word uiteengesit, wat van toepassing is op verwante studies wat biomeganiese analise van menslike gewrigte vereis.

Please refer to this item in SUNScholar by using the following persistent URL: http://hdl.handle.net/10019.1/103785
This item appears in the following collections: