Development of a flight control system for the subsonicwing deployment of a reusable rocket booster

Date
2018-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: A flight control system and a navigation system have been developed for the subsonic wing deployment of a reusable first stage rocket booster. In previous research, the booster’s wing was designed to rotate about a single pivot point, resulting in an oblique wing aircraft while partially deployed. Additionally, the booster was designed to utilise deployable propellers powered by a piston engine for thrust during the flyback portion of the return flight as an unmanned aircraft. This work defined a concept of operations for the booster for the subsonic return flight prior to starting the piston engine. The aerodynamics of the booster were modelled in the rocket configuration, in the oblique wing configuration and in the aircraft configuration to form the basis for the controller designs. Furthermore, the criticalMach number of the booster’s wing in the oblique wing configuration and in the aircraft configuration was determined, and constrains the airspeed at which the wing may be deployed. Since the critical Mach number increases with increasing wing sweep in the oblique wing configuration, the booster first partially deploys the wing to generate lift at a higher velocity and altitude. A pull-up manoeuvre was then performed to further reduce the airspeed by exchanging kinetic energy for gravitational potential energy, before fully deploying the wing. With the wing fully deployed, a minimum sink rate glide was established in order to maximise the time available to start the piston engine. A cascaded control architecture was designed to handle the significant variation in the booster’s geometry throughout the wing deployment, as well as the dynamic cross-coupling resulting from the oblique wing configuration. The control architecture consists of four parts. An outer loop uses single-input, single-output controllers to achieve the pull-up manoeuvre and the gliding flight by commanding an attitude. Two separate inner loops use multiple-input, multiple-output controllers to first track this attitude by commanding an angular velocity, and then track this angular velocity by commanding a body moment. Finally, control allocation is utilised to distribute the required moment to the six aerodynamic control surfaces on the booster, which vary in effectiveness and availability throughout the wing deployment. The navigation system uses low-cost, commercially available sensors fused with two separate Kalman filters to estimate the attitude, position and velocity of the booster. A multiplicative extendedKalman filter estimates the booster’s attitude using a gyroscope and measurements of inertially referenced vectors in the body frame. The reference vectors utilised were Earth’s magnetic and gravity fields. The second Kalman filter estimates the position and velocity using the accelerometer and a Global Positioning System. The inertial velocity output from this filter was differentiated in order to estimate the dynamic acceleration, which was subtracted from an accelerometer measurement to provide the gravity vector measurement to the attitude filter. The control system and navigation system were verified in a six degree-of-freedom simulation. Atmospheric disturbances were modelled by static winds, wind gusts and turbulence. Imperfect sensors were accounted for by introducing characteristic measurement noise in the simulation.
AFRIKAANSE OPSOMMING: ’n Vlugbeheer- en navigasiestelsel is ontwikkel vir die subsoniese vlerkontplooing van ’n herbruikbare vuurpylstadium. In vorige navorsing is die vlerk van die eerste stadium ontwikkel om om ’n enkele spilpunt te kan roteer. Die resultaat hiervan is ’n skewe vlerk vliegtuig tydens vlerk ontplooing. Verder is die eerste stadium ontwerp om van ontplooibare propellers wat deur ’n suierenjin aangedryf word, gebruik te maak om stukrag te voorsien tydens die onbemande terugvlug. Hierdiewerk definieer die konsep van die eerste stadium se werking tydens die subsoniese terugvlug, voordat die suierenjin aanskakel. Die aerodinamiese eienskappe van die vuurpyl is gemodelleer in die vuurpylkonfigurasie, skeefvlerkkonfigurasie, sowel as die vliegtuigkonfigurasie om die basis van die beheerderontwerp te vorm. Verder is die kritieseMach getal in beide die skeefvlerk- en vliegtuigkonfigurasie bepaal, aangesien dit die lugspoed waartydens die vlerk ontplooi kan word, beperk. Aangesien die kritiese Mach getal vermeerder soos die vlerkhoek vermeerder, ontplooi die eerstestadium die vlerk eers gedeeltelik sodat stygkrag teen ’n hoër spoed en hoogte gegenereer kan word. ’n Optrekbeweging word dan gedoen om die lugspoed verder te verminder deur kinetiese energie vir gravitasiepotensiële energie te verruil voordat die vlerk ten volle ontplooi word. Met die vlerk ten volle ontplooi, kan die eerste stadium teen ’n minimum dalingstempo sweef, sodat die tyd waarin die suierenjin kan aansit, gemaksimieer kan word. ’n Kaskade beheerargitektuur is ontwerpomdie variasies in die vuurpylgeometrie tydens die vlerkontplooing sowel as die dinamiese kruiskoppeling in die skeef vlerk konfigurasie te hanteer. Die beheerargitektuur bestaan uit vier dele. ’n Buitelus-beheerder gebruik enkel-intree-enkel-uittree beheerders om beide die optrekbeweging sowel as die sweefvlug te beheer deur die oriëntasie te verander. Twee aparte binnelus-beheerders gebruik multi-intree-multi-uittree beheerdersomeers die oriëntasie te volg deur die hoeksneheid te verstel en daarna hierdie snelheid te volg deur ’n ligaamsbeweging te maak. Uiteindelik word beheertoekenning gebruik om die nodige moment aan die ses beheervlakke toe te ken, aangesien die beheer oppervlakte se doeltreffendheid kan varieer tydens die vlerkontplooing. Die navigasiestelsel gebruik lae koste, kommersieel-beskikbare sensors, geïntegreer met twee aparte Kalman-filters. Die filters word gebruik om die oriëntasie, posisie en snelheid van die vuurpyl te beraam. ’n Vermenigvuldigende, uitgebreide Kalman-filter skat die vuurpyl se oriëntasie deur van ’n giroskoop, sowel as metings van inersieel-verwysde vektore in die liggaam assestelsel gebruik te maak. Die verwysingsvektore gebruik die aarde se magneet- en swaartekragvelde. Die tweede Kalman-filter beraam die posisie en snelheid deur gebruik te maak van ’n versnellingsensor en GPS. Die inersiële snelheid uittree vanaf die filter word gedifferensieer om sodoende dinamiese versnelling te bepaal. Hierdie dinamiese versnelling word van die versnellingssensormetings afgetrek om die swaartekragvektore aan die oriëntasie filter te verskaf. Beide die beheer- en navigasiestelsel is in ’n simulasie geverifieer waartydens ses vryheidsgrade in ag geneem is. Atmospheriese versteuringe is gemodelleer deur statiese winde, rukwinde sowel as turbulensie. Sensor meetfoute is nageboots deur die kenmerkende meetingsruis in die simulasie in te sluit.
Description
Thesis (MEng)--Stellenbosch University, 2018.
Keywords
Booster rockets, Control systems (Flight), Aerodynamics, Subsonic, Navigation systems, UCTD
Citation