Research Articles (Viticulture and Oenology)
Permanent URI for this collection
Browse
Browsing Research Articles (Viticulture and Oenology) by Subject "Anthocyanins"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemEffects of abiotic factors on phenolic compounds in the grape berry – a review(South African Society for Enology and Viticulture, 2019) Blancquaert, E. H.; Oberholster, A.; Ricardo-Da-Silva, J. M.; Deloire, A. J.Grape berry phenolic compounds are widely described in literature. Phenolics can be divided into two main groups: flavonoids and non-flavonoids, of which the flavonoids are the most important. The two bestknown groups of flavonoids are the anthocyanins and condensed tannins (also called proanthocyanidins). Anthocyanins are responsible for the red colour in grapes. The condensed tannins (proanthocyanidins) are responsible for some major wine sensorial properties (astringency, browning, and turbidity) and areinvolved in the wine ageing processes. This review summarises flavonoid synthesis in the grape berry and the impact of environmental factors on the accumulation rate during ripening of each of the flavonoids. The impact of the accumulated flavonoids in grapes and the resulting impact on the sensorial aspects of the wine are also discussed.
- ItemImpact of time, oxygen and different anthocyanin to tannin ratios on the precipitate and extract composition using liquid chromatography-high resolution mass spectrometry(South African Society for Enology and Viticulture, 2019) Garrido-Banuelos, G.; Buica, A.; De Villiers, A.; Du Toit, W. J.Wine colour and phenolic stability over time are influenced by the amount and nature of phenolics in young wines. The ratio between different phenolic compounds can also be determinant in the colour and phenolic development of red wines. Three different anthocyanin to tannin ratios extracted in a wine-like system were saturated with oxygen several times during sample storage. A LC-HRMS method was used to evaluate the impact of a forced oxidation and of the different extracts on the wine-like composition and on the precipitate formed over time. The extract composition was found to be the most determinant factor for the precipitate formed. Time was also found to be a relevant factor according to the precipitate composition.
- ItemMetabolomic profiling of the desiccation-tolerant medicinal shrub myrothamnus flabellifolia indicates phenolic variability across its natural habitat : implications for tea and cosmetics production(MDPI, 2019-03-29) Bentley, Joanne; Moore, John P.; Farrant, Jill M.The leaves and twigs of the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia are harvested for use in traditional and commercial teas and cosmetics due to their phenolic properties. The antioxidant and pharmacological value of this plant has been widely confirmed; however, previous studies typically based their findings on material collected from a single region. The existence of phenolic variability between plants from different geographical regions experiencing different rainfall regimes has thus not been sufficiently evaluated. Furthermore, the anthocyanins present in this plant have not been assessed. The present study thus used an untargeted liquid chromatography-tandem-mass spectrometry approach to profile phenolics in M. flabellifolia material collected from three climatically distinct (high, moderate, and low rainfall) regions representing the western, southern, and eastern extent of the species range in southern Africa. Forty-one putative phenolic compounds, primarily flavonoids, were detected, nine of which are anthocyanins. Several of these compounds are previously unknown from M. flabellifolia. Using multivariate statistics, samples from different regions could be distinguished by their phenolic profiles, supporting the existence of regional phenolic variability. This study indicates that significant phenolic variability exists across the range of M. flabellifolia, which should inform both commercial and traditional cultivation and harvesting strategies.
- ItemThe role of UV-visible spectroscopy for phenolic compounds quantification in winemaking(2019) Aleixandre-Tudo, Jose Luis; Du Toit, WesselPhenolic compounds are bioactive substances present in a large number of food products including wine. The importance of these compounds in wine is due to their large effect on the organoleptic attributes of wine. Phenolic compounds play a crucial role in the colour as well as mouthfeel properties of wines. UV-visible spectroscopy appears as a suitable technique for the evaluation of phenolic compounds’ properties and content. The ability of the phenolic ring to absorb UV light and the fact that some of the phenolic substances are coloured compounds, i.e. show absorption features in the visible region, make UV-visible spectroscopy a suitable technique to investigate and quantify grape and wine phenolic compounds. A number of analytical techniques are currently used for phenolic quantification. These include both simpler approaches (spectrophotometric determinations) as well as more complex methodologies such liquid chromatography analysis. Moreover, a number of spectroscopy applications have also been recently reported and are becoming popular within the wine industry. This chapter reviews information on the UV-visible spectral properties of phenolic compounds, changes occurring during wine ageing and also discusses the current UV-visible based analytical techniques used for the quantification of phenolic compounds in grapes and wine.