Research Articles (Statistics and Actuarial Science)
Permanent URI for this collection
Browse
Browsing Research Articles (Statistics and Actuarial Science) by Subject "Biochemical markers"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemHost markers in Quantiferon supernatants differentiate active TB from latent TB infection : preliminary report(BioMed Central, 2009-05) Chegou, Novel N.; Black, Gillian F.; Kidd, Martin; Van Helden, Paul D.; Walzl, GerhardBackground: Interferon gamma release assays, including the QuantiFERON® TB Gold In Tube (QFT) have been shown to be accurate in diagnosing Mycobacterium tuberculosis infection. These assays however, do not discriminate between latent TB infection (LTBI) and active TB disease. Methods: We recruited twenty-three pulmonary TB patients and 34 household contacts from Cape Town, South Africa and performed the QFT test. To investigate the ability of new host markers to differentiate between LTBI and active TB, levels of 29 biomarkers in QFT supernatants were evaluated using a Luminex multiplex cytokine assay. Results: Eight out of 29 biomarkers distinguished active TB from LTBI in a pilot study. Baseline levels of epidermal growth factor (EGF) soluble CD40 ligand (sCD40L), antigen stimulated levels of EGF, and the background corrected antigen stimulated levels of EGF and macrophage inflammatory protein (MIP)-1β were the most informative single markers for differentiation between TB disease and LTBI, with AUCs of 0.88, 0.84, 0.87, 0.90 and 0.79 respectively. The combination of EGF and MIP-1β predicted 96% of active TB cases and 92% of LTBIs. Combinations between EGF, sCD40L, VEGF, TGF-α and IL-1α also showed potential to differentiate between TB infection states. EGF, VEGF, TGF-α and sCD40L levels were higher in TB patients. Conclusion: These preliminary data suggest that active TB may be accurately differentiated from LTBI utilizing adaptations of the commercial QFT test that includes measurement of EGF, sCD40L, MIP-1β, VEGF, TGF-α or IL-1α in supernatants from QFT assays. This approach holds promise for development as a rapid diagnostic test for active TB.