Doctoral Degrees (Applied Mathematics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Applied Mathematics) by Subject "Deep learning (Machine learning)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAnalysing retinal fundus images with deep learning models(Stellenbosch : Stellenbosch University, 2023-12) Ofosu Mensah, Samuel; Bah, Bubacarr; Brink, Willie; Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. Applied Mathematics Division.ENGLISH ABSTRACT: Convolutional neural networks (CNNs) have successfully been used to classify diabetic retinopathy but they do not provide immediate explanations for their decisions. Explainability is relevant, especially for clinicians. To make results explainable, we use a post-attention technique called gradient-weighted class activation mapping (Grad- CAM) on the penultimate layer of deep learning models to produce localisation maps on retinal fundus images after using them to classify diabetic retinopathy. Moreover, the models were initialised using pre-trained weights obtained from training models on the ImageNet dataset. The results of this are fewer training epochs and improved performance. Next, we predict cardiovascular risk factors (CVFs) using retinal fundus images. In detail, we use a multi-task learning (MTL) model since there are several CVFs. The impact of using an MTL model is the advantage of simultaneously training for and predicting several CVFs rather than doing so individually. Also, we investigate the performance of the fundus cameras used to capture the retinal fundus images. We notice a superior performance of the desktop fundus cameras to the handheld fundus camera. Finally, we propose a hybrid model that fuses convolutions and Transformer encoders. This is done to harness the benefits of convolutions and Transformer encoders. We compare the performance of the proposed model with other attention-based models and observe on-par performance.
- ItemDental implant recognition(Stellenbosch : Stellenbosch University, 2023-09) Kohlakala, Aviwe; Coetzer, Johannes; Stellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. Applied Mathematics Division.ENGLISH ABSTRACT: Deep learning-based frameworks have recently been steadily outperforming existing state-of-the-art systems in a number of computer vision applications, but these models require a large number of training samples in order to effectively train the model parameters. Within the medical field the limited availability of training data is one of the main challenges faced when using deep learning to create practical clinical applications in medical imaging. In this dissertation a novel algorithm for generating artificial training samples from triangulated three-dimensional (3D) surface models within the context of dental implant recognition is proposed. The proposed algorithm is based on the calculation of two-dimensional (2D) parallel projections from a number of different angles of 3D volumetric representations of computer-aided design (CAD) surface models. A fully convolutional network (FCN) is subsequently trained on the artificially generated X-ray images for the purpose of automatically identifying the connection type associated with a specific dental implant in an actual X-ray image. An ensemble of image processing and deep learning-based techniques capable of distinguishing between pixels that belong to an implant from those belonging to the background in an actual X-ray image is developed. Normalisation and preprocessing techniques are subsequently applied to the segmented dental implants within the questioned actual X-ray image. The normalised dental implants are presented to the trained FCN for classification purposes. Experiments are conducted on two data sets that contain the simulated and actual X-ray images in order to gauge the proficiency of the proposed systems. Given the fact that the novel systems proposed in this study utilise an ensemble of techniques that has not been employed for the purpose of dental implant classification/recognition on any previous occasion, the results achieved in this study are encouraging and constitute a significant contribution to the current state of the art, especially in scenarios where the proposed systems are combined with existing systems.