Department of Biomedical Sciences
Permanent URI for this community
Browse
Browsing Department of Biomedical Sciences by Subject "Acomys spinosissimus"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemMorphology and mucin histochemistry of the gastrointestinal tracts of three insectivorous mammals : Acomys spinosissimus, Crocidura cyanea and Amblysomus hottentotus(Stellenbosch : Stellenbosch University, 2012-03) Boonzaier, Julia; Kotze, Sanet; Van der Merwe, Elizabeth L.; Stellenbosch University. Faculty of Health Sciences. Dept. of Biomedical Sciences. Anatomy and Histology.ENGLISH ABSTRACT: The gastrointestinal morphology and the distribution of the different types of mucin secreting goblet cells were investigated in three mammalian insectivorous species, namely A. spinosissimus, C. cyanea and A. hottentotus. The aim of the study was to provide a comprehensive morphological comparison between the different species. Another aim was to illustrate and compare the distribution of mucins (neutral, sulfo- and sialomucins) in the gastrointestinal tracts (GITs) of these species, in order to better understand the quality of the biofilm in the GIT. Mucins secreted onto the surface of the GIT have an effect on the colonisation of microflora in the mucosal layer, constructing a biofilm which protects the GIT surface from opportunistic pathogens. The shape, proportional length, and proportional surface areas of the different gastrointestinal regions were recorded and compared in the three species. Histochemical staining methods were used to detect and to distinguish between neutral, sulfo- and sialomucins. The number of goblet cells in the GIT containing each of the above mucins in the epithelium lining the surface or crypts was quantified, and the data expressed as the number of neutral, sulfo- or sialomucin containing goblet cells per mm2 of the surface or crypt epithelium. In all three species the stomach was uncompartmentalised. The internal aspect of the stomach in A. spinosissimus was hemi-glandular, containing stratified squamous epithelium in the fundus, with glandular epithelium in the body and pyloric region. However, C. cyanea and A. hottentotus had wholly glandular stomachs. A. spinosissimus was the only species studied that had a caecum which demonstrated transverse mucosal folds and V-shaped mucosal folds in the proximal colon. Both C. cyanea and A. hottentotus had villi up to the distal part of the GIT. Longitudinal mucosal folds were present in the distal colon. The GITs of both C. cyanea and A. hottentotus showed little morphological differentiation namely a simple, glandular stomach and the lack of a caecum. Mixed (neutral and acid) mucins and mixed acid (sulfo- and sialomucins) mucin secreting goblet cells were prominent mucin cell types in all three mammalian insectivorous species. Despite these general similarities, marked differences were observed in the qualitative expression and distribution of the three types of mucins throughout the GIT. The overall similarity between the three insectivores and other distantly related mammalian species suggests that mixed mucin secreting goblet cell types are prominent contributors to the maintenance of the intestinal biofilm in the majority of mammals, irrespective of their diet or taxonomy.