Browsing by Author "Zhao, Xiuhai"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAssessing biological dissimilarities between five forest communities(SpringerOpen (part of Springer Nature), 2019-06-06) Hao, Minhui; Corral-Rivas, J. J.; Gonzalez-Elizondo, M. S.; Ganeshaiah, K. N.; Nava-Miranda, M. G.; Zhang, Chunyu; Zhao, Xiuhai; Von Gadow, KlausBackground: Dissimilarity in community composition is one of the most fundamental and conspicuous features by which different forest ecosystems may be distinguished. Traditional estimates of community dissimilarity are based on differences in species incidence or abundance (e.g. the Jaccard, Sørensen, and Bray-Curtis dissimilarity indices). However, community dissimilarity is not only affected by differences in species incidence or abundance, but also by biological heterogeneities among species. Methods: The objective of this study is to present a new measure of dissimilarity involving the biological heterogeneity among species. The “discriminating Avalanche” introduced in this study, is based on the taxonomic dissimilarity between tree species. The application is demonstrated using observations from five stem-mapped forest plots in China and Mexico. We compared three traditional community dissimilarity indices (Jaccard, Sørensen, and Bray-Curtis) with the “discriminating Avalanche” index, which incorporates information, not only about species frequencies, but also about their taxonomic hierarchies. Results: Different patterns emerged for different measures of community dissimilarity. Compared with the traditional approaches, the discriminating Avalanche values showed a more realistic estimate of community dissimilarities, indicating a greater similarity among communities when species were closely related. Conclusions: Traditional approaches for assessing community dissimilarity disregard the taxonomic hierarchy. In the traditional analysis, the dissimilarity between Pinus cooperi and Pinus durangensis would be the same as the dissimilarity between P. cooperi and Arbutus arizonica. The dissimilarity Avalanche dissimilarity between P. cooperi and P. durangensis is considerably lower than the dissimilarity between P. cooperi and A. arizonica, because the taxonomic hierarchies are incorporated. Therefore, the discriminating Avalanche is a more realistic measure of community dissimilarity. This main result of our study may contribute to improved characterization of community dissimilarities.
- ItemDrivers of seedling survival in a temperate forest and their relative importance at three stages of succession(John Wiley & Sons Ltd., 2015-09-10) Yan, Yan; Zhang, Chunyu; Wang, Yuxi; Zhao, Xiuhai; Von Gadow, KlausNegative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half-mature forest (HF), a mature forest (MF), and an old-growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1–2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage.
- ItemEffects of density dependence in a temperate forest in northeastern China(Springer Nature, 2016-09-08) Yao, Jie; Zhang, Xinna; Zhang, Chunyu; Zhao, Xiuhai; Von Gadow, KlausENGLISH ABSTRACT: Negative density dependence may cause reduced clustering among individuals of the same species, and evidence is accumulating that conspecific density-dependent self-thinning is an important mechanism regulating the spatial structure of plant populations. This study evaluates that specific density dependence in three very large observational studies representing three successional stages in a temperate forest in northeastern China. The methods include standard spatial point pattern analysis and a heterogeneous Poisson process as the null model to eliminate the effects of habitat heterogeneity. The results show that most of the species exhibit conspecific density-dependent self-thinning. In the early successional stage 11 of the 16 species, in the intermediate successional stage 18 of the 21 species and in the old growth stage all 21 species exhibited density dependence after removing the effects of habitat heterogeneity. The prevalence of density dependence thus varies among the three successional stages and exhibits an increase with increasing successional stage. The proportion of species showing density dependence varied depending on whether habitat heterogeneity was removed or not. Furthermore, the strength of density dependence is closely related with species abundance. Abundant species with high conspecific aggregation tend to exhibit greater density dependence than rare species.
- ItemFunctional and phylogenetic diversity determine woody productivity in a temperate forest(Wiley Open Access, 2018) Hao, MinHui; Zhang, Chunyu; Zhao, Xiuhai; Von Gadow, KlausENGLISH ABSTRACT: Understanding the relationships between biodiversity and ecosystem productivity has become a central issue in ecology and conservation biology studies, particularly when these relationships are connected with global climate change and species extinction. However, which facets of biodiversity (i.e. taxonomic, functional, and phylogeneticdiversity) account most for variations in productivity are still not understood very well. This is especially true with regard to temperate forest ecosystems. In this study, we used a dataset from a stem- mapped permanent forest plot in northeastern China ex-ploring the relationships between biodiversity and productivity at different spatial scales (20 × 20 m; 40 × 40 m; and 60 × 60 m). The influence of specific environmental conditions (topographic conditions) and stand maturity (expressed by initial stand vol-ume and biomass) were taken into account using the multivariate approach known as structural equation models. The variable “Biodiversity” includes taxonomic (Shannon), functional (FDis), and phylogenetic diversity (PD). Biodiversity–productivity relation-ships varied with the spatial scales. At the scale of 20 × 20 m, PD and FDis significantly affected forest biomass productivity, while Shannon had only indirect effects. At the 40 × 40 m and 60 × 60 m scales, biodiversity and productivity were weakly correlated. The initial stand volume and biomass were the most important drivers of forest pro-ductivity. The local environmental conditions significantly influenced the stand vol-ume, biomass, biodiversity, and productivity. The results highlight the scale dependency of the relationships between forest biodiversity and productivity. The positive role of biodiversity in facilitating forest productivity was confirmed at the smaller scales. Our findings emphasize the fundamental role of environmental conditions in determining forest ecosystem performances. The results of this study provide a better understand-ing of the underlying ecological processes that influence specific forest biodiversity and productivity relationships.
- ItemLatitudinal gradients and ecological drivers of β-diversity vary across spatial scales in a temperate forest region(Wiley, 2020-03-12) Zhang, Chunyu; He, Fangliang; Zhang, Zhonghui; Zhao, Xiuhai; von Gadow, KlausAim: Our understanding of the mechanisms driving β-diversity is still rather rudimentary. This study evaluates the influences of environmental filtering versus spatial scale of regional communities on β-diversity across latitudes. Location: North-eastern China. Methods: The β-diversity was calculated in each regional community. The spatial extent of these “regional communities”, which included five or 10 plots, was ≤ 140 km. A random assembly null model was used to assess the effects of species abundance distribution on the β-diversity. Moreover, the deviation of observed β-diversity from a null model (called β-deviation) was also assessed. The variations of the β values were partitioned into environmental, latitudinal and their joint effects. Results: The observed β-diversity declined with increasing latitude, although the β-deviations showed a non-monotonic pattern as the latitude increased at two studied scales. All the regional communities consisting of five or 10 local plots exhibited significantly positive β-deviations. The total amount of variation in β-deviations explained by environmental and latitudinal variables increased dramatically with increasing scale. A significant pure environmental effect was observed at both scales, explaining 30% of the variation in β-deviation for regional communities consisting of five local plots and 58.7% for regional communities consisting of 10 local plots. The spatial variation in precipitation primarily accounted for the β-gradient. Main conclusions: This is one of the few multiscale analyses to investigate latitudinal patterns and driving mechanisms of tree β-diversity in temperate forests. The β-deviation showed a similar trend of change with latitude, but the variation of β-deviation explained by the environments and latitude was highly dependent on the scale of regional communities studied. Environmental filtering and the spatial scale of regional communities jointly accounted for the β-gradient, with environmental filtering appearing to determine the high variation of species turnover along the latitudinal gradient.
- ItemLimitations to reproductive success in the dioecious tree Rhamnus davurica(PLoS, 2013-12) Wang, Juan; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V.The reproductive success of a female plant in a dioecious species may be affected by pollen limitation and resource limitation. This study presents evidence that the reproductive success of the dioecious understorey tree species, Rhamnus davurica, is affected by the distance to the nearest male. The sex ratios were female-biased, although showing fluctuations in the three years of conducting the study. The mortality rate of females was higher than that of males indicating a trade-off between reproduction and survival. Altogether 49 females, designated as “focal females”, were randomly selected for monitoring their reproductive status between April and October in 2010. But successful reproduction (meaning that the flowering female trees had fruit in the fruiting season) was observed only in 28 females in 2011 and 16 females in 2012. The method of path analysis was applied to determine the effect of topography, local competition and proximity to the nearest male on the fruit set of the females. In the three years of the study, elevation, competition and female size had no significant effect on the fruit set. The distance to the nearest male, however, had a significant effect on fruit set. Number of fruits and fruit set were decreased with increasing distance to the nearest male. It was possible to estimate maximum fruit set, based on the comparatively large dataset. The number of fruits and the fruit set are exponentially related to the distance to the nearest male and the relationships are described by an exponential model. The results of this study support the importance of pollen limitation on the reproductive success in Rhamnus davurica.
- ItemSoil elements influencing community structure in an old-growth forest in Northeastern China(MDPI, 2016) Xu, Wei; Hao, Minhui; Wang, Juan; Zhang, Chunyu; Zhao, Xiuhai; Von Gadow, KlausENGLISH ABSTRACT: This study uses detailed soil and vegetation data collected in a 30-ha old-growth broad-leaved Korean pine forest to study the effect of soil properties on tree community structures. Spatial distribution patterns are simulated using a homogeneous Poisson process (HomP) and a homogeneous Thomas process (HomT). The simulated distributions are compared with the observed ones to explore correlations between certain tree species and several soil elements. The HomP model shows that all tested tree species are significantly correlated with at least one principal component in the upper-layer soil elements. The HomT model shows that only 36.4% of tree species are significantly correlated with the principal component of at least one upper-layer soil element. This result shows that the impact of dispersal limitation is greater than impact of environmental heterogeneity on species spatial distributions. The spatial autocorrelation of species induced by the dispersal limitation will largely conceal the plant-soil relationships caused by the heterogeneity of soil elements. An additional analysis shows that the elements in the upper soil layer which have the greatest impact on community niche structure are Pb, total phosphorus (TP), total nitrogen (TN), Cu, Cr, Zn and available nitrogen (AN). The corresponding elements in the lower soil layers are Pb, TP, Cu, organic carbon (OC), Mn, total potassium (TK) and AN. Different species seem to be complementary regarding the demands on the available soil resources. The results of this study show that the tree species in the different growth groups have different habitat preferences. Compared with subcanopy and shrub species, the canopy species have more significant correlations with the soil elements.
- ItemStoichiometry patterns in the androdioecious Acer tegmentosum(Springer Nature, 2016-10-11) Zhang, Xinna; Yao, Jie; Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Wang, Juan; Zhao, Xiuhai; Von Gadow, KlausENGLISH ABSTRACT: This study evaluates stoichiometry patterns in the androdioecious Acer tegmentosum, a species characterized by a rare reproductive system where males and hermaphrodites coexist. Altogether 31 hermaphrodites and 29 male plants were harvested and samples of leaves, current-year shoots, branches and coarse roots were analyzed to explore gender differences in biomass, C, N and P concentrations of these four components. The nitrogen to phosphorus relationship of each component was examined using SMA estimates. Males had significantly greater amounts of leaf and coarse root dry matter content than hermaphrodites. C, N and P stoichiometry differed significantly between genders, especially in the newly emerging vegetative components (leaves and shoots). Males had higher C/N and C/P ratios in current-year shoots and lower C/P ratios in leaves and branches. Hermaphrodites had higher N/P ratios in the leaves and branches. Males had higher rates of increase in leaf P content than hermaphrodites. This study suggests that stoichiometry patterns may be significantly affected by gender.